Partial liver transplantation, including reduced-size liver transplantation, split liver transplantation, and living donor liver transplantation, has been developed with several innovative techniques because of donor shortage. Reduced-size liver transplantation is based on Couinaud’s anatomical classification, benefiting children and small adult recipients but failing to relieve the overall donor shortage. Split liver transplantation provides chances to two or even more recipients when only one liver graft is available. The splitting technique must follow stricter anatomical and physiological criteria either
Brain-dead donors have become one of the main sources of organs for transplantation in Western countries. The quality of donor organs is closely related to the outcome of the transplantation. Experimental studies have confirmed the inferior graft survival of livers from brain-dead donors compared with those from living donors. Studies conducted in the past 10 years have shown that brain death is associated with effects on the decreased donor organ quality. However, whether the decrease in the viability of donor organs is caused by brain death or by the events before and after brain death remains uncertain. The purpose of this review is to introduce the advances and controversies regarding the influence of brain death on the viability of donor livers and to summarize the mechanisms of the different protective interventions for donor livers.
Acute liver failure remains a significant cause of morbidity and mortality. Bioartificial liver (BAL) devices have been in development for more than 20 years. Such devices aim to temporarily take over the metabolic and excretory functions of the liver until the patients’ own liver has recovered or a donor liver becomes available for transplant. The important issues include the choice of cell materials and the design of the bioreactor. Ideal BAL cell materials should be of good viability and functionality, easy to access, and exclude immunoreactive and tumorigenic cell materials. Unfortunately, the current cells in use in BAL do not meet these requirements. One of the challenges in BAL development is the improvement of current materials; another key point concerning cell materials is the coculture of different cells. The bioreactor is an important component of BAL, because it determines the viability and function of the hepatocytes within it. From the perspective of bioengineering, a successful and clinically effective bioreactor should mimic the structure of the liver and provide an
The prevalence of the risk factors and the risk of cardiac failure are both increasing in China. This might be the consequence of the changes of the life conditions (emigration to the urban areas, changes in the diet and life style, lack of physical exercise,
Liver transplantation is the only life-saving procedure for patients with end-stage liver disease. However, its potential benefits are hampered by many disadvantages, such as the relative shortage of donors, operative risks, and high costs. These issues have prompted the search for new alternative therapies for irreversible liver disease. Stem cell therapy, with the ability for self-renewal and potential for multilineage differentiation, is a promising alternative approach. Several studies have demonstrated that transplantation of hepatic stem/progenitor cells or hepatocyte-like cells derived from multipotent stem cells leads to donor cell-mediated repopulation of the liver and improved survival rates in experimental models of liver disease. However, a registered clinical application based on stem cell technology will take at least an additional 5 to 10 years because of some limitations; e.g. the lack of suitable cell sources and risk of teratoma formation. This review summarizes the general understanding of the therapeutic potentials of stem cells in liver disease, including the sources, mechanisms, and delivery methods of hepatic stem cells in liver regeneration, and discusses some challenges for their therapeutic application.
Adult stem cells hold great promise for wound healing and tissue regeneration. Mesenchymal stem cells (MSCs), for example, have been shown to play a role in tissue repair. Research has shown that endogenous bone marrow MSCs or exogenously delivered MSCs migrate to the sites of injury and participate in the repair process. The precise mechanisms underlying migration of MSCs into the injured tissue are still not fully understood, although multiple signaling pathways and molecules were reported, including both chemoattractive factors and endogenous electric fields at wounds. This review will briefly summarize the regulatory facors and signaling transduction pathways involved in migration of MSCs. A better understanding of the molecular mechanisms involved in the migration of MSCs will help us to develop new stem cell-based therapeutic strategies in regenerative medicine.
Adult stem cells are responsible for homeostasis and repair of many tissues. Endogenous adult stem cells reside in certain regions of organs, known as the stem cell niche, which is recognized to have an important role in regulating tissue maintenance and repair. In wound healing and tissue repair, stem cells are mobilized and recruited to the site of wound, and participate in the repair process. Many regulatory factors are involved in the stem cell-based repair process, including stem cell niches and endogenous wound electric fields, which are present at wound tissues and proved to be important in guiding wound healing. Here we briefly review the role of stem cell niches and endogenous electric fields in tissue repair, and hypothesize that endogenous electric fields become part of stem cell niche in the wound site.
Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia. In past decades, intensive studies on the biology and treatment of this disease have resulted in a remarkably thorough understanding of its pathogenesis and improvement of treatment outcomes. In particular, the introduction of all-trans retinoic acid to conventional chemotherapy improved dramatically the remission and survival rates of APL patients and consequently became the major treatment modality for it. In the last decade, the groundbreaking development of arsenic further improved the survival rate of APL patients. As the most active agent in APL, arsenic directly degrades the PML-RARα fusion transcript, leading to the differentiation and apoptosis of leukemia cells and the potential eradication of APL leukemia-initiating cells (LICs), thus making the disease a potentially curable type of leukemia. More notably, the recent development of oral arsenic compounds may further enhance not only clinical outcomes but also the convenience of patients, which may dramatically change the APL clinical scenario in the near future.
Video-assisted thoracoscopic surgery (VATS) provides a new approach for treating early-stage lung cancer. Lobectomy by VATS has many advantages over conventional thoracotomy, such as shorter recovery time, less postoperative pain, and faster resumption of a normal lifestyle. However, there is still much debate on the role of VATS in lobectomy for the treatment of lung cancer. Concerns regarding safety, the extent of mediastinal lymph node dissection, and long-term survival have made some surgeons apprehensive of its validity for lung cancer. In this paper, we review the development of thoracoscopy, the present status of VATS for early stage of non-small cell lung cancer (NSCLC), and comparison between VATS and open thoracotomy in the management of NSCLC.
Tissue engineering aims to produce a functional tissue replacement to repair defects. Tissue reconstruction is an essential step toward the clinical application of engineered tissues. Significant progress has recently been achieved in this field. In our laboratory, we focus on construction of cartilage, tendon and bone. The purpose of this review was to summarize the advances in the engineering of these three tissues, particularly focusing on tissue regeneration and defect repair in our laboratory. In cartilage engineering, articular cartilage was reconstructed and defects were repaired in animal models. More sophisticated tissues, such as cartilage in the ear and trachea, were reconstructed both
Protein kinase C epsilon (PKC ?) is one of major isoforms in novel PKC family. Although it has been extensively characterized in the past decade, the role of PKC ? in neuron is still not well understood. Advances in molecular biology have now removed significant barriers to the direct investigation of PKC ? functions
Pulp capping is one of the solving for keeping vital pulp in the case of dentin caries, reversible pulpitis or traumatic pulp exposure. The presence of bacteria on the cavity walls or in the pulp was the major factor that leads to the failure of pulp capping. Traditional pulp capping agent, calcium hydroxide, may not prevent microleakage. Self-etching system is a newly developed adhesive system, which could provide less microleakage and would not break down or dissolve, preventing the oral fluids and bacteria from the pulp along the cavity wall. This may reduce such clinical problems as postoperative sensitivity, secondary caries and marginal discoloration. Researches showed that some kinds of self-etching adhesives induced the mild to moderate inflammatory pulp response, with negative bacterial staining. Inclusion of antibacterial components into self-etching system, such as 12- methacryloyloxydodecylpyridinium bromide (MDPB) may inhibit bacteria and provide better clinical effects. It is speculated that using the self-etching adhesive system containing the antibacterial agent, such as MDPB, to the dental pulp directly or indirectly, may inhibit bacteria after the placement of restoration as well as residual bacteria in the cavity.
Highly sensitized patients experience an increased number of rejection episodes and have poorer graft survival rates; hence, sensitization is a significant barrier to both access to and the success of organ transplantation. This study reports our experience in kidney transplantation in highly sensitized patients. Fourteen patients with sensitization or high levels of panel-reactive antibodies (PRA) were studied. All patients were desensitized with pre-transplant intravenous immunoglobulin (IVIG)/plasmapheresis (PP) with or without rituximab and thymoglobulin induction therapy, combined with a Prograf/MMF/Pred immunosuppressive regimen. Of 14 patients, 10 showed good graft functions without acute rejection (AR) episodes. Acute cellular rejection in two patients was reversed by methylprednisolone. Two patients underwent antibody-mediated rejection; one was treated with PP/IVIG successfully, whereas the other lost graft functions due to the
Netrin-1 (NT-1) is one of the axon-guiding molecules that are critical for neuronal development. Because of its structural homology to the endothelial mitogens, NT-1 may have similar effects on vascular network formation. NT-1 was shown to be able to stimulate the proliferation and migration of human cerebral endothelial cells
Mesenchymal stem cells (MSC) have been used in clinical trials for severe diabetes, a chronic disease with high morbidity and mortality. Bone marrow is the traditional source of human MSC, but human term placenta appears to be an alternative and more readily available source. Here, the therapeutic effect of human placenta-derived MSC (PD-MSC) was studied in type 2 diabetes patients with longer duration, islet cell dysfunction, high insulin doses as well as poor glycemic control in order to evaluate the safety, efficacy and feasibility of PD-MSC treatment in type 2 diabetes (T2D). Ten patients with T2D received three intravenous infusions of PDSC, with one month interval of infusion. The total number of PDSC for each patient was (1.22–1.51) × 106/kg, with an average of 1.35 × 106/kg. All of the patients were followed up after therapy for at least 3 months. A daily mean dose of insulin used in 10 patients was decreased from 63.7?±?18.7 to 34.7?±?13.4 IU (
It has been demonstrated that β-elemene could protect against carbon tetrachloride (CCl4)-induced liver fibrosis in our laboratory work, and the aim of this paper is to reveal the protective mechanisms of β-elemene. The hepatic fibrosis experimental model was induced by the hypodermical injection of CCl4 in Wistar male rats. β-elemene was intraperitoneally administered into rats for 8 weeks (0.1 mL/100 g bodyweight per day), and plasma endotoxin content was assayed by biochemistry. The serum TNF-α level was detected using radioactive immunity. CD14 expression in rat livers was measured by immunohistochemistry and Western blot. The results showed that β-elemene can downregulate the levels of plasma endotoxins, serum TNF-α, and hepatic CD14 expression in rats with liver fibrosis. β-elemene plays an important role in downregulating the lipopolysaccharide signal transduction pathway, a significant pathway in hepatic fibrosis development.
Establishing a model for small-for-size liver transplantation is the basis for this study of partial and living donor graft liver transplantation. This study aims to explore a simpler and more effective way of establishing a 30% small-for-size liver transplantation in rats. Sprague-Dawley rats were selected as the donors and recipients. Small-for-size orthotopic liver transplantation was performed using Kamada’s two-cuff method. The donor’s liver was flushed via the abdominal aorta and hepatectomy was performed