The role of protein kinase C epsilon in neural signal transduction and neurogenic diseases

Yuan CHEN, Qi TIAN

PDF(137 KB)
PDF(137 KB)
Front. Med. ›› 2011, Vol. 5 ›› Issue (1) : 70-76. DOI: 10.1007/s11684-011-0119-9
REVIEW
REVIEW

The role of protein kinase C epsilon in neural signal transduction and neurogenic diseases

Author information +
History +

Abstract

Protein kinase C epsilon (PKC ϵ) is one of major isoforms in novel PKC family. Although it has been extensively characterized in the past decade, the role of PKC ϵ in neuron is still not well understood. Advances in molecular biology have now removed significant barriers to the direct investigation of PKC ϵ functions in vivo, and PKC ϵ has been increasingly implicated in the neural biological functions and associated neurogenic diseases. Recent studies have provided important insights into the influence of PKC ϵ on cortical processing at both the single cell level and network level. These studies provide compelling evidence that PKC ϵ could regulate distinct aspects of neural signal transduction and suggest that the coordinated actions of a number of molecular signals contribute to the specification and differentiation of PKC ϵ signal pathway in the developing brain.

Keywords

protein kinase C ϵ / signal transduction / neurogenic disease

Cite this article

Download citation ▾
Yuan CHEN, Qi TIAN. The role of protein kinase C epsilon in neural signal transduction and neurogenic diseases. Front Med, 2011, 5(1): 70‒76 https://doi.org/10.1007/s11684-011-0119-9

References

[1]
Battaini F. Protein kinase C isoforms as therapeutic targets in nervous system disease states. Pharmacol Res, 2001, 44(5): 353-361
CrossRef Pubmed Google scholar
[2]
Chen G, Masana M I, Manji H K. Lithium regulates PKC-mediated intracellular cross-talk and gene expression in the CNS in vivo. Bipolar Disord, 2000, 2(3 Pt 2): 217-236
CrossRef Pubmed Google scholar
[3]
Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J, 1995, 9(7): 484-496
Pubmed
[4]
Van Kolen K, Pullan S, Neefs J M, Dautzenberg F M. Nociceptive and behavioural sensitisation by protein kinase Cepsilon signalling in the CNS. J Neurochem, 2008, 104(1): 1-13
Pubmed
[5]
Bruch R C, Kang J S, Moore M L Jr, Medler K F. Protein kinase C and receptor kinase gene expression in olfactory receptor neurons. J Neurobiol, 1997, 33(4): 387-394
CrossRef Pubmed Google scholar
[6]
Zeidman R, Löfgren B, Pâhlman S, Larsson C. PKCepsilon, via its regulatory domain and independently of its catalytic domain, induces neurite-like processes in neuroblastoma cells. J Cell Biol, 1999, 145(4): 713-726
CrossRef Pubmed Google scholar
[7]
Patten S A, Sihra R K, Dhami K S, Coutts C A, Ali D W. Differential expression of PKC isoforms in developing zebrafish. Int J Dev Neurosci, 2007, 25(3): 155-164
CrossRef Pubmed Google scholar
[8]
Shirai Y, Adachi N, Saito N. Protein kinase Cepsilon: function in neurons. FEBS J, 2008, 275(16): 3988-3994
CrossRef Pubmed Google scholar
[9]
Minami H, Owada Y, Suzuki R, Handa Y, Kondo H. Localization of mRNAs for novel, atypical as well as conventional protein kinase C (PKC) isoforms in the brain of developing and mature rats. J Mol Neurosci, 2000, 15(2): 121-135
CrossRef Pubmed Google scholar
[10]
Saito N, Itouji A, Totani Y, Osawa I, Koide H, Fujisawa N, Ogita K, Tanaka C. Cellular and intracellular localization of epsilon-subspecies of protein kinase C in the rat brain; presynaptic localization of the epsilon-subspecies. Brain Res, 1993, 607(1-2): 241-248
CrossRef Pubmed Google scholar
[11]
Uhlén M, Björling E, Agaton C, Szigyarto C A, Amini B, Andersen E, Andersson A C, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Björklund M G, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Sköllermo A, Steen J, Stenvall M, Sterky F, Strömberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Waldén A, Wan J, Wernérus H, Westberg J, Wester K, Wrethagen U, Xu L L, Hober S, Pontén F. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics, 2005, 4(12): 1920-1932
CrossRef Pubmed Google scholar
[12]
Uhlen M, Ponten F. Antibody-based proteomics for human tissue profiling. Mol Cell Proteomics, 2005, 4(4): 384-393
CrossRef Pubmed Google scholar
[13]
Akita Y. Protein kinase C-epsilon (PKC-epsilon): its unique structure and function. J Biochem, 2002, 132(6): 847-852
Pubmed
[14]
Yonezawa T, Kurata R, Kimura M, Inoko H. PKC delta and epsilon in drug targeting and therapeutics. Recent Pat DNA Gene Seq, 2009, 3(2): 96-101
CrossRef Pubmed Google scholar
[15]
Newton P M, Messing R O. The substrates and binding partners of protein kinase Cepsilon. Biochem J, 2010, 427(2): 189-196
CrossRef Pubmed Google scholar
[16]
Newton P M, Ron D. Protein kinase C and alcohol addiction. Pharmacol Res, 2007, 55(6): 570-577
CrossRef Pubmed Google scholar
[17]
Prekeris R, Mayhew M W, Cooper J B, Terrian D M. Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function. J Cell Biol, 1996, 132(1-2): 77-90
CrossRef Pubmed Google scholar
[18]
Zeidman R, Trollér U, Raghunath A, Påhlman S, Larsson C. Protein kinase Cepsilon actin-binding site is important for neurite outgrowth during neuronal differentiation. Mol Biol Cell, 2002, 13(1): 12-24
CrossRef Pubmed Google scholar
[19]
Aksoy E, Goldman M, Willems F. Protein kinase C epsilon: a new target to control inflammation and immune-mediated disorders. Int J Biochem Cell Biol, 2004, 36(2): 183-188
CrossRef Pubmed Google scholar
[20]
Basu A, Sivaprasad U. Protein kinase Cepsilon makes the life and death decision. Cell Signal, 2007, 19(8): 1633-1642
CrossRef Pubmed Google scholar
[21]
Gorin M A, Pan Q. Protein kinase C epsilon: an oncogene and emerging tumor biomarker. Mol Cancer, 2009, 8(1): 9
CrossRef Pubmed Google scholar
[22]
Zhu W G, Xu P, Cuascut F X, Hall A K, Oxford G S. Activin acutely sensitizes dorsal root ganglion neurons and induces hyperalgesia via PKC-mediated potentiation of transient receptor potential vanilloid I. J Neurosci, 2007, 27(50): 13770-13780
CrossRef Pubmed Google scholar
[23]
Keri G O L, Eros D. Signal transduction therapy with rationally designed kinase inhibitors. Curr Signal Transduct Ther, 2006, 1(1): 67-95
CrossRef Google scholar
[24]
Johnson J A. Differential inhibition by alpha and epsilon PKC pseudosubstrate sequences: a putative mechanism for preferential PKC activation in neonatal cardiac myocytes. Life Sci, 2004, 74(25): 3153-3172
CrossRef Pubmed Google scholar
[25]
Hernandez A I, Blace N, Crary J F, Serrano P A, Leitges M, Libien J M, Weinstein G, Tcherapanov A, Sacktor T C. Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem, 2003, 278(41): 40305-40316
CrossRef Pubmed Google scholar
[26]
Saito N, Shirai Y. Protein kinase C gamma (PKC gamma): function of neuron specific isotype. J Biochem, 2002, 132(5): 683-687
Pubmed
[27]
Osten P, Hrabetova S, Sacktor T C. Differential downregulation of protein kinase C isoforms in spreading depression. Neurosci Lett, 1996, 221(1): 37-40
CrossRef Pubmed Google scholar
[28]
Hussain R J, Carpenter D O. A comparison of the roles of protein kinase C in long-term potentiation in rat hippocampal areas CA1 and CA3. Cell Mol Neurobiol, 2005, 25(3-4): 649-661
CrossRef Pubmed Google scholar
[29]
Hussain R J, Carpenter D O. Development of synaptic responses and plasticity at the SC-CA1 and MF-CA3 synapses in rat hippocampus. Cell Mol Neurobiol, 2001, 21(4): 357-368
CrossRef Pubmed Google scholar
[30]
Tao W Q, Xiao P, Xu S T, Hu X J, Ou Y Q. Changes of synaptic transmission efficiency in the MF-CA3 and PP-CA3 pathways of rat hippocampus during discrimination learning. Sheng Li Xue Bao, 1996, 48(5): 431-436
Pubmed
[31]
Hama H, Hara C, Yamaguchi K, Miyawaki A. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron, 2004, 41(3): 405-415
CrossRef Pubmed Google scholar
[32]
Chen Y, Cantrell A R, Messing R O, Scheuer T, Catterall W A. Specific modulation of Na+ channels in hippocampal neurons by protein kinase C epsilon. J Neurosci, 2005, 25(2): 507-513
CrossRef Pubmed Google scholar
[33]
Villarreal C F, Sachs D, Funez M I, Parada C A, de Queiroz Cunha F, Ferreira S H. The peripheral pro-nociceptive state induced by repetitive inflammatory stimuli involves continuous activation of protein kinase A and protein kinase C epsilon and its Na(V)1.8 sodium channel functional regulation in the primary sensory neuron. Biochem Pharmacol, 2009, 77(5): 867-877
CrossRef Pubmed Google scholar
[34]
Squassina A, Congiu D, Manconi F, Manchia M, Chillotti C, Lampus S, Severino G, Zompo M D. The PDLIM5 gene and lithium prophylaxis: an association and gene expression analysis in Sardinian patients with bipolar disorder. Pharmacol Res, 2008, 57(5): 369-373
CrossRef Pubmed Google scholar
[35]
Chen Y, Lai M Z, Maeno-Hikichi Y, Zhang J F. Essential role of the LIM domain in the formation of the PKC epsilon-ENH-N-type Ca2+ channel complex. Cell Signal, 2006, 18(2): 215-224
CrossRef Pubmed Google scholar
[36]
Zhang J, Chen Y, Lai M, and Maeno-Hikichi Y. A phosphatase is part of a PKC-n-type calcium channel signaling complex in neurons. Society for Neuroscience Abstract Viewer and Itinerary Planner, 2002, No. 115.7.
[37]
Maeno-Hikichi Y, Chang S, Matsummura K, Lai M, Lin H, Nakagawa N, Kuroda S, Zhang J F. A PKC epsilon-ENH-channel complex spedifically modulates N-type Ca2+ channels. Nat Neurosci, 2003, 6(5): 468-475
Pubmed
[38]
Gardezi S R, Weber A M, Li Q, Wong F K, Stanley E F. PDLIM5 is not a neuronal CaV2.2 adaptor protein. Nat Neurosci, 2009, 12(8): 957-958, author reply 958
CrossRef Pubmed Google scholar
[39]
Burgos M, Pastor M D, González J C, Martinez-Galan J R, Vaquero C F, Fradejas N, Benavides A, Hernández-Guijo J M, Tranque P, Calvo S. PKC epsilon upregulates voltage-dependent calcium channels in cultured astrocytes. Glia, 2007, 55(14): 1437-1448
CrossRef Pubmed Google scholar
[40]
Saegusa H, Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, Han W, Toriyama H, Tanabe T. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J, 2001, 20(10): 2349-2356
CrossRef Pubmed Google scholar
[41]
Raval A P, Dave K R, DeFazio R A, Perez-Pinzon M A. epsilonPKC phosphorylates the mitochondrial K(+) (ATP) channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res, 2007, 1184: 345-353
CrossRef Pubmed Google scholar
[42]
Song C Y, Xi H J, Yang L, Qu L H, Zi Y, Zhou J, Cui X G, Gao W, Wang N, Pan Z W, and Li W Z. Propofol inhibited the delayed rectifier potassium current (I(k)) via activation of protein kinase C epsilon in rat parietal cortical neurons. Eur J Pharmacol, 2011, 653(1–3): 16–20
[43]
Zeidman R, Pettersson L, Sailaja P R, Truedsson E, Fagerström S, Påhlman S, Larsson C. Novel and classical protein kinase C isoforms have different functions in proliferation, survival and differentiation of neuroblastoma cells. Int J Cancer, 1999, 81(3): 494-501
CrossRef Pubmed Google scholar
[44]
Kolkova K, Stensman H, Berezin V, Bock E, Larsson C. Distinct roles of PKC isoforms in NCAM-mediated neurite outgrowth. J Neurochem, 2005, 92(4): 886-894
CrossRef Pubmed Google scholar
[45]
Burry R W. PKC activators (phorbol ester or bryostatin) stimulate outgrowth of NGF-dependent neurites in a subline of PC12 cells. J Neurosci Res, 1998, 53(2): 214-222
CrossRef Pubmed Google scholar
[46]
Mikule K, Sunpaweravong S, Gatlin J C, Pfenninger K H. Eicosanoid activation of protein kinase C epsilon: involvement in growth cone repellent signaling. J Biol Chem, 2003, 278(23): 21168-21177
CrossRef Pubmed Google scholar
[47]
Théodore L, Derossi D, Chassaing G, Llirbat B, Kubes M, Jordan P, Chneiweiss H, Godement P, Prochiantz A. Intraneuronal delivery of protein kinase C pseudosubstrate leads to growth cone collapse. J Neurosci, 1995, 15(11): 7158-7167
Pubmed
[48]
Isbister C M, O’Connor T P. Mechanisms of growth cone guidance and motility in the developing grasshopper embryo. J Neurobiol, 2000, 44(2): 271-280
CrossRef Pubmed Google scholar
[49]
Tessier-Lavigne M, Goodman C S. The molecular biology of axon guidance. Science, 1996, 274(5290): 1123-1133
CrossRef Pubmed Google scholar
[50]
Ling M, Trollér U, Zeidman R, Lundberg C, Larsson C. Induction of neurites by the regulatory domains of PKC delta and epsilon is counteracted by PKC catalytic activity and by the RhoA pathway. Exp Cell Res, 2004, 292(1): 135-150
CrossRef Pubmed Google scholar
[51]
Trollér U, Larsson C. Cdc42 is involved in PKCepsilon- and delta-induced neurite outgrowth and stress fibre dismantling. Biochem Biophys Res Commun, 2006, 349(1): 91-98
CrossRef Pubmed Google scholar
[52]
Shirai Y, Murakami T, Kuramasu M, Iijima L, Saito N. A novel PIP2 binding of epsilon PKC and its contribution to the neurite induction ability. J Neurochem, 2007, 102(5): 1635-1644
CrossRef Pubmed Google scholar
[53]
Yamaguchi H, Shiraishi M, Fukami K, Tanabe A, Ikeda-Matsuo Y, Naito Y, Sasaki Y. MARCKS regulates lamellipodia formation induced by IGF-I via association with PIP2 and beta-actin at membrane microdomains. J Cell Physiol, 2009, 220(3): 748-755
CrossRef Pubmed Google scholar
[54]
Nguyen L, He Q, Meiri K F. Regulation of GAP-43 at serine 41 acts as a switch to modulate both intrinsic and extrinsic behaviors of growing neurons, via altered membrane distribution. Mol Cell Neurosci, 2009, 41(1): 62-73
CrossRef Pubmed Google scholar
[55]
Tauskela J S, chakravarthy B R, Murray C L, Wang Y Z, Comas T, Hogan M, Hakim A, Morley P. Evidence from cultured rat cortical neurons of differences in the mechanism of ischemic preconditioning of brain and heart. Brain Res, 1999, 827(1-2): 143-151
CrossRef Pubmed Google scholar
[56]
Kim E J, Raval A P, Perez-Pinzon M A. Preconditioning mediated by sublethal oxygen-glucose deprivation-induced cyclooxygenase-2 expression via the signal transducers and activators of transcription 3 phosphorylation. J Cereb Blood Flow Metab, 2008, 28(7): 1329-1340
CrossRef Pubmed Google scholar
[57]
Wolfrum S, Schneider K, Heidbreder M, Nienstedt J, Dominiak P, Dendorfer A. Remote preconditioning protects the heart by activating myocardial PKCepsilon-isoform. Cardiovasc Res, 2002, 55(3): 583-589
CrossRef Pubmed Google scholar
[58]
Liu Z G, Xia Z Y, Chen X D, Luo T. Isoflurane induces expression of vascular endothelial growth factor through activating protein kinase C in myocardial cells. Chin J Traumatol, 2010, 13(5): 284-288
Pubmed
[59]
Budas G R, Mochly-Rosen D. Mitochondrial protein kinase Cepsilon (PKCepsilon): emerging role in cardiac protection from ischaemic damage. Biochem Soc Trans, 2007, 35(Pt 5): 1052-1054
CrossRef Pubmed Google scholar
[60]
Dave K R, Anthony Defazio R, Raval A P, Dashkin O, Saul I, Iceman K E, Perez-Pinzon M A, Drew K L. Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel. J Neurochem, 2009, 110(4): 1170-1179
CrossRef Pubmed Google scholar
[61]
Ferreira J, Trichês K M, Medeiros R, Calixto J B. Mechanisms involved in the nociception produced by peripheral protein kinase c activation in mice. Pain, 2005, 117(1-2): 171-181
CrossRef Pubmed Google scholar
[62]
Davis J B, Gray J, Gunthorpe M J, Hatcher J P, Davey P T, Overend P, Harries M H, Latcham J, Clapham C, Atkinson K, Hughes S A, Rance K, Grau E, Harper A J, Pugh P L, Rogers D C, Bingham S, Randall A, Sheardown S A. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 2000, 405(6783): 183-187
CrossRef Pubmed Google scholar
[63]
Hucho T B, Dina O A, Kuhn J, Levine J D. Estrogen controls PKCepsilon-dependent mechanical hyperalgesia through direct action on nociceptive neurons. Eur J Neurosci, 2006, 24(2): 527-534
CrossRef Pubmed Google scholar
[64]
Sachs D, Villarreal C F, Cunha F Q, Parada C A, Ferreira Sh. The role of PKA and PKCepsilon pathways in prostaglandin E2-mediated hypernociception. Br J Pharmacol, 2009, 156(5): 826-834
CrossRef Pubmed Google scholar
[65]
Zhang H, Cang C L, Kawasaki Y, Liang L L, Zhang Y Q, Ji R R, Zhao Z Q. Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCepsilon: a novel pathway for heat hyperalgesia. J Neurosci, 2007, 27(44): 12067-12077
CrossRef Pubmed Google scholar
[66]
Khasar S G, Lin Y H, Martin A, Dadgar J, McMahon T, Wang D, Hundle B, Aley K O, Isenberg W, McCarter G, Green P G, Hodge C W, Levine J D, Messing R O. A novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant mice. Neuron, 1999, 24(1): 253-260
CrossRef Pubmed Google scholar
[67]
Khasar S G, McCarter G, Levine J D. Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol, 1999, 81(3): 1104-1112
Pubmed
[68]
Ferrari L F, Bogen O, Levine J D. Nociceptor subpopulations involved in hyperalgesic priming. Neuroscience, 2010, 165(3): 896-901
CrossRef Pubmed Google scholar
[69]
Amadesi S, Cottrell G S, Divino L, Chapman K, Grady E F, Bautista F, Karanjia R, Barajas-Lopez C, Vanner S, Vergnolle N, Bunnett N W. Protease-activated receptor 2 sensitizes TRPV1 by protein kinase C epsilon- and A-dependent mechanisms in rats and mice. J Physiol, 2006, 575(2): 555-571
CrossRef Google scholar
[70]
Bautista F, Amadesi S, Karanjia R, Barajas-Lopez C, Burnett N, Vanner S. Protease activated receptor 2 (PAR2) Sensitization of TRPV1 currents is mediated by protein kinase CE and protein kinase A. Gastroenterology, 2006, 130(4): A336-A336
[71]
Srinivasan R, Wolfe D, Goss J, Watkins S, de Groat W C, Sculptoreanu A, Glorioso J C. Protein kinase C epsilon contributes to basal and sensitizing responses of TRPV1 to capsaicin in rat dorsal root ganglion neurons. Eur J Neurosci, 2008, 28(7): 1241-1254
CrossRef Pubmed Google scholar
[72]
Sculptoreanu A, Aura Kullmann F, de Groat W C. Neurokinin 2 receptor-mediated activation of protein kinase C modulates capsaicin responses in DRG neurons from adult rats. Eur J Neurosci, 2008, 27(12): 3171-3181
CrossRef Pubmed Google scholar
[73]
Numazaki M, Tominaga T, Toyooka H, Tominaga M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem, 2002, 277(16): 13375-13378
CrossRef Pubmed Google scholar
[74]
Mandadi S, Tominaga T, Numazaki M, Murayama N, Saito N, Armati P J, Roufogalis B D, Tominaga M. Tominaga, Numazaki M, Murayama N, Saito N, Armati P J, Roufogalis B D, and Tominaga M. Increased sensitivity of desensitized TRPV1 by PMA occurs through PKC epsilon-mediated phosphorylation at S800. Pain, 2006, 123(1-2): 106-116
CrossRef Pubmed Google scholar
[75]
Honan S A, McNaughton P A. Sensitisation of TRPV1 in rat sensory neurones by activation of SNSRs. Neurosci Lett, 2007, 422(1): 1-6
CrossRef Pubmed Google scholar
[76]
Choi D S, Wang D, Chang W, McMahon T, Taylor S, Messing R O. Expression of the PKC epsilon in the brain controls ethanol-drinking behavior. Society for Neuroscience Abstracts, 2001, 27(1): 1495
[77]
Bajo M, Cruz M T, Siggins G R, Messing R, Roberto M. Protein kinase C epsilon mediation of CRF- and ethanol-induced GABA release in central amygdala. Proc Natl Acad Sci USA, 2008, 105(24): 8410-8415
CrossRef Pubmed Google scholar
[78]
Besheer J, Lepoutre V, Mole B, Hodge C W. GABAA receptor regulation of voluntary ethanol drinking requires PKCepsilon. Synapse, 2006, 60(6): 411-419
CrossRef Pubmed Google scholar
[79]
Hodge C W, Raber J, McMahon T, Walter H, Sanchez-Perez A M, Olive M F, Mehmert K, Morrow A L, Messing R O. Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cepsilon. J Clin Invest, 2002, 110(7): 1003-1010
Pubmed
[80]
Hodge C W, Mehmert K K, Kelley S P, McMahon T, Haywood A, Olive M F, Wang D, Sanchez-Perez A M, Messing R O. Supersensitivity to allosteric GABA(A) receptor modulators and alcohol in mice lacking PKCepsilon. Nat Neurosci, 1999, 2(11): 997-1002
CrossRef Pubmed Google scholar
[81]
Das J, Pany S, Rahman G M, Slater S J. PKC epsilon has an alcohol-binding site in its second cysteine-rich regulatory domain. Biochem J, 2009, 421(3): 405-413
CrossRef Pubmed Google scholar
[82]
Jiang Z L, Ye J H. Protein kinase C epsilon is involved in ethanol potentiation of glycine-gated Cl(-) current in rat neurons of ventral tegmental area. Neuropharmacology, 2003, 44(4): 493-502
CrossRef Pubmed Google scholar
[83]
Lesscher H M, Wallace M J, Zeng L, Wang V, Deitchman J K, McMahon T, Messing R O, Newton P M. Amygdala protein kinase C epsilon controls alcohol consumption. Genes Brain Behav, 2009, 8(5): 493-499
CrossRef Pubmed Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No 30870785.).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(137 KB)

Accesses

Citations

Detail

Sections
Recommended

/