Stem cell niches and endogenous electric fields in tissue repair

Li LI, Jianxin JIANG

PDF(206 KB)
PDF(206 KB)
Front. Med. ›› 2011, Vol. 5 ›› Issue (1) : 40-44. DOI: 10.1007/s11684-011-0108-z
REVIEW
REVIEW

Stem cell niches and endogenous electric fields in tissue repair

Author information +
History +

Abstract

Adult stem cells are responsible for homeostasis and repair of many tissues. Endogenous adult stem cells reside in certain regions of organs, known as the stem cell niche, which is recognized to have an important role in regulating tissue maintenance and repair. In wound healing and tissue repair, stem cells are mobilized and recruited to the site of wound, and participate in the repair process. Many regulatory factors are involved in the stem cell-based repair process, including stem cell niches and endogenous wound electric fields, which are present at wound tissues and proved to be important in guiding wound healing. Here we briefly review the role of stem cell niches and endogenous electric fields in tissue repair, and hypothesize that endogenous electric fields become part of stem cell niche in the wound site.

Keywords

stem cell / stem cell niche / electric field / tissue repair

Cite this article

Download citation ▾
Li LI, Jianxin JIANG. Stem cell niches and endogenous electric fields in tissue repair. Front Med, 2011, 5(1): 40‒44 https://doi.org/10.1007/s11684-011-0108-z

References

[1]
Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev, 2003, 13(5): 543–550
CrossRef Pubmed Google scholar
[2]
Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol, 2003, 58: 1–26
CrossRef Pubmed Google scholar
[3]
Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester J V, Bourne H R, Devreotes P N, McCaig C D, Penninger J M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 2006, 442(7101): 457–460
CrossRef Pubmed Google scholar
[4]
Scadden D T. The stem-cell niche as an entity of action. Nature, 2006, 441(7097): 1075–1079
CrossRef Pubmed Google scholar
[5]
Jones D L, Wagers A J. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol, 2008, 9(1): 11–21
CrossRef Pubmed Google scholar
[6]
Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell, 2004, 116(6): 769–778
CrossRef Pubmed Google scholar
[7]
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 1978, 4(1-2): 7–25
Pubmed
[8]
Nie D. Cancer stem cell and niche. Front Biosci (Schol Ed), 2010, 2(1): 184–193 (Schol Ed)
CrossRef Pubmed Google scholar
[9]
King F J, Lin H. Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development, 1999, 126(9): 1833–1844
Pubmed
[10]
Xie T, Spradling A C. A niche maintaining germ line stem cells in the Drosophila ovary. Science, 2000, 290(5490): 328–330
CrossRef Pubmed Google scholar
[11]
Tumbar T, Guasch G, Greco V, Blanpain C, Lowry W E, Rendl M, Fuchs E. Defining the epithelial stem cell niche in skin. Science, 2004, 303(5656): 359–363
CrossRef Pubmed Google scholar
[12]
Yen T H, Wright N A. The gastrointestinal tract stem cell niche. Stem Cell Rev, 2006, 2(3): 203–212
CrossRef Pubmed Google scholar
[13]
Conover J C, Notti R Q. The neural stem cell niche. Cell Tissue Res, 2008, 331(1): 211–224
CrossRef Pubmed Google scholar
[14]
Mitsiadis T A, Barrandon O, Rochat A, Barrandon Y, De Bari C. Stem cell niches in mammals. Exp Cell Res, 2007, 313(16): 3377–3385
CrossRef Pubmed Google scholar
[15]
Ohshima H, Nakasone N, Hashimoto E, Sakai H, Nakakura-Ohshima K, Harada H. The eternal tooth germ is formed at the apical end of continuously growing teeth. Arch Oral Biol, 2005, 50(2): 153–157
CrossRef Pubmed Google scholar
[16]
Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol, 2006, 6(2): 93–106
CrossRef Pubmed Google scholar
[17]
Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 2010, 7(2): 150–161
CrossRef Pubmed Google scholar
[18]
Moore K A, Lemischka I R. Stem cells and their niches. Science, 2006, 311(5769): 1880–1885
CrossRef Pubmed Google scholar
[19]
Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA, 2003, 100(90001 Suppl 1): 11830–11835
CrossRef Pubmed Google scholar
[20]
Morris R J, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin J S, Sawicki J A, Cotsarelis G. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol, 2004, 22(4): 411–417
CrossRef Pubmed Google scholar
[21]
Morris R J, Potten C S. Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif, 1994, 27(5): 279–289
CrossRef Pubmed Google scholar
[22]
Cotsarelis G, Sun T T, Lavker R M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 1990, 61(7): 1329–1337
CrossRef Pubmed Google scholar
[23]
Luo J, Daniels S B, Lennington J B, Notti R Q, Conover J C. The aging neurogenic subventricular zone. Aging Cell, 2006, 5(2): 139–152
CrossRef Pubmed Google scholar
[24]
Luskin M B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 1993, 11(1): 173–189
CrossRef Pubmed Google scholar
[25]
Menn B, Garcia-Verdugo J M, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci, 2006, 26(30): 7907–7918
CrossRef Pubmed Google scholar
[26]
Seri B, García-Verdugo J M, Collado-Morente L, McEwen B S, Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 2004, 478(4): 359–378
CrossRef Pubmed Google scholar
[27]
Park H C, Yasuda K, Kuo M C, Ni J, Ratliff B B, Chander P N, Goligorsky M S. Renal capsule as a stem cell niche. Am J Physiol Renal Physiol, 2010, 67(5): 1254–1262
CrossRef Pubmed Google scholar
[28]
Kim K, Lee K M, Han D J, Yu E, Cho Y M. Adult stem cell-like tubular cells reside in the corticomedullary junction of the kidney. Int J Clin Exp Pathol, 2008, 1(3): 232–241
Pubmed
[29]
Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins R W, Lecapitaine N, Cascapera S, Beltrami A P, D’Alessandro D A, Zias E, Quaini F, Urbanek K, Michler R E, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci USA, 2007, 104(35): 14068–14073
CrossRef Pubmed Google scholar
[30]
Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA, 2006, 103(24): 9226–9231
CrossRef Pubmed Google scholar
[31]
Zhang J, Niu C, Ye L, Huang H, He X, Tong W G, Ross J, Haug J, Johnson T, Feng J Q, Harris S, Wiedemann L M, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003, 425(6960): 836–841
CrossRef Pubmed Google scholar
[32]
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh G Y, Suda T. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 2004, 118(2): 149–161
CrossRef Pubmed Google scholar
[33]
Kiel M J, Yilmaz O H, Iwashita T, Yilmaz O H, Terhorst C, Morrison S J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 2005, 121(7): 1109–1121
CrossRef Pubmed Google scholar
[34]
Kopp H G, Avecilla S T, Hooper A T, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda), 2005, 20(5): 349–356
CrossRef Pubmed Google scholar
[35]
Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem, 2008, 283(15): 9499–9503
CrossRef Pubmed Google scholar
[36]
Barker A T, Jaffe L F, Vanable J W Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol, 1982, 242(3): R358–R366
Pubmed
[37]
Candia O A. Electrolyte and fluid transport across corneal, conjunctival and lens epithelia. Exp Eye Res, 2004, 78(3): 527–535
CrossRef Pubmed Google scholar
[38]
Mukerjee E V, Isseroff R R, Nuccitelli R, Collins S D, Smith R L. Microneedle array for measuring wound generated electric fields. Conf Proc IEEE Eng Med Biol Soc, 2006, 1: 4326–4328
CrossRef Pubmed Google scholar
[39]
Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith P J. Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen, 2008, 16(3): 432–441
CrossRef Pubmed Google scholar
[40]
McCaig C D, Rajnicek A M, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev, 2005, 85(3): 943–978
CrossRef Pubmed Google scholar
[41]
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009, 20(6): 674–682
CrossRef Pubmed Google scholar
[42]
Song B, Zhao M, Forrester J V, McCaig C D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA, 2002, 99(21): 13577–13582
CrossRef Pubmed Google scholar
[43]
Arocena M, Zhao M, Collinson J M, Song B. A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J Neurosci Res, 2010, 88(15): 3267–3274
CrossRef Pubmed Google scholar
[44]
Ariza C A, Fleury A T, Tormos C J, Petruk V, Chawla S, Oh J, Sakaguchi D S, Mallapragada S K. The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev, 2010, 6(4): 585–600
CrossRef Pubmed Google scholar
[45]
Hammerick K E, Longaker M T, Prinz F B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun, 2010, 397(1): 12–17
CrossRef Pubmed Google scholar
[46]
Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry, 2006, 69(2): 133–141
CrossRef Pubmed Google scholar
[47]
Tandon N, Goh B, Marsano A, Chao P H, Montouri-Sorrentino C, Gimble J, Vunjak-Novakovic G. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf Proc IEEE Eng Med Biol Soc, 2009, 2009(1): 6517–6521
Pubmed
[48]
Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res, 2009, 315(20): 3611–3619
CrossRef Pubmed Google scholar

Acknowledgements

We are very grateful to Professor Min Zhao (University of California, Davis) for his great help of critical reading of the manuscript. This work is supported by Key Program of National Nature Science Foundation of China (81030037) and Open fund of State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (SKLZZ200804).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(206 KB)

Accesses

Citations

Detail

Sections
Recommended

/