Stem cell niches and endogenous electric fields in tissue repair
Li LI, Jianxin JIANG
Stem cell niches and endogenous electric fields in tissue repair
Adult stem cells are responsible for homeostasis and repair of many tissues. Endogenous adult stem cells reside in certain regions of organs, known as the stem cell niche, which is recognized to have an important role in regulating tissue maintenance and repair. In wound healing and tissue repair, stem cells are mobilized and recruited to the site of wound, and participate in the repair process. Many regulatory factors are involved in the stem cell-based repair process, including stem cell niches and endogenous wound electric fields, which are present at wound tissues and proved to be important in guiding wound healing. Here we briefly review the role of stem cell niches and endogenous electric fields in tissue repair, and hypothesize that endogenous electric fields become part of stem cell niche in the wound site.
stem cell / stem cell niche / electric field / tissue repair
[1] |
Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev, 2003, 13(5): 543–550
CrossRef
Pubmed
Google scholar
|
[2] |
Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol, 2003, 58: 1–26
CrossRef
Pubmed
Google scholar
|
[3] |
Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester J V, Bourne H R, Devreotes P N, McCaig C D, Penninger J M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 2006, 442(7101): 457–460
CrossRef
Pubmed
Google scholar
|
[4] |
Scadden D T. The stem-cell niche as an entity of action. Nature, 2006, 441(7097): 1075–1079
CrossRef
Pubmed
Google scholar
|
[5] |
Jones D L, Wagers A J. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol, 2008, 9(1): 11–21
CrossRef
Pubmed
Google scholar
|
[6] |
Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell, 2004, 116(6): 769–778
CrossRef
Pubmed
Google scholar
|
[7] |
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 1978, 4(1-2): 7–25
Pubmed
|
[8] |
Nie D. Cancer stem cell and niche. Front Biosci (Schol Ed), 2010, 2(1): 184–193 (Schol Ed)
CrossRef
Pubmed
Google scholar
|
[9] |
King F J, Lin H. Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development, 1999, 126(9): 1833–1844
Pubmed
|
[10] |
Xie T, Spradling A C. A niche maintaining germ line stem cells in the Drosophila ovary. Science, 2000, 290(5490): 328–330
CrossRef
Pubmed
Google scholar
|
[11] |
Tumbar T, Guasch G, Greco V, Blanpain C, Lowry W E, Rendl M, Fuchs E. Defining the epithelial stem cell niche in skin. Science, 2004, 303(5656): 359–363
CrossRef
Pubmed
Google scholar
|
[12] |
Yen T H, Wright N A. The gastrointestinal tract stem cell niche. Stem Cell Rev, 2006, 2(3): 203–212
CrossRef
Pubmed
Google scholar
|
[13] |
Conover J C, Notti R Q. The neural stem cell niche. Cell Tissue Res, 2008, 331(1): 211–224
CrossRef
Pubmed
Google scholar
|
[14] |
Mitsiadis T A, Barrandon O, Rochat A, Barrandon Y, De Bari C. Stem cell niches in mammals. Exp Cell Res, 2007, 313(16): 3377–3385
CrossRef
Pubmed
Google scholar
|
[15] |
Ohshima H, Nakasone N, Hashimoto E, Sakai H, Nakakura-Ohshima K, Harada H. The eternal tooth germ is formed at the apical end of continuously growing teeth. Arch Oral Biol, 2005, 50(2): 153–157
CrossRef
Pubmed
Google scholar
|
[16] |
Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol, 2006, 6(2): 93–106
CrossRef
Pubmed
Google scholar
|
[17] |
Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 2010, 7(2): 150–161
CrossRef
Pubmed
Google scholar
|
[18] |
Moore K A, Lemischka I R. Stem cells and their niches. Science, 2006, 311(5769): 1880–1885
CrossRef
Pubmed
Google scholar
|
[19] |
Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA, 2003, 100(90001 Suppl 1): 11830–11835
CrossRef
Pubmed
Google scholar
|
[20] |
Morris R J, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin J S, Sawicki J A, Cotsarelis G. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol, 2004, 22(4): 411–417
CrossRef
Pubmed
Google scholar
|
[21] |
Morris R J, Potten C S. Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif, 1994, 27(5): 279–289
CrossRef
Pubmed
Google scholar
|
[22] |
Cotsarelis G, Sun T T, Lavker R M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 1990, 61(7): 1329–1337
CrossRef
Pubmed
Google scholar
|
[23] |
Luo J, Daniels S B, Lennington J B, Notti R Q, Conover J C. The aging neurogenic subventricular zone. Aging Cell, 2006, 5(2): 139–152
CrossRef
Pubmed
Google scholar
|
[24] |
Luskin M B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 1993, 11(1): 173–189
CrossRef
Pubmed
Google scholar
|
[25] |
Menn B, Garcia-Verdugo J M, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci, 2006, 26(30): 7907–7918
CrossRef
Pubmed
Google scholar
|
[26] |
Seri B, García-Verdugo J M, Collado-Morente L, McEwen B S, Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 2004, 478(4): 359–378
CrossRef
Pubmed
Google scholar
|
[27] |
Park H C, Yasuda K, Kuo M C, Ni J, Ratliff B B, Chander P N, Goligorsky M S. Renal capsule as a stem cell niche. Am J Physiol Renal Physiol, 2010, 67(5): 1254–1262
CrossRef
Pubmed
Google scholar
|
[28] |
Kim K, Lee K M, Han D J, Yu E, Cho Y M. Adult stem cell-like tubular cells reside in the corticomedullary junction of the kidney. Int J Clin Exp Pathol, 2008, 1(3): 232–241
Pubmed
|
[29] |
Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins R W, Lecapitaine N, Cascapera S, Beltrami A P, D’Alessandro D A, Zias E, Quaini F, Urbanek K, Michler R E, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci USA, 2007, 104(35): 14068–14073
CrossRef
Pubmed
Google scholar
|
[30] |
Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA, 2006, 103(24): 9226–9231
CrossRef
Pubmed
Google scholar
|
[31] |
Zhang J, Niu C, Ye L, Huang H, He X, Tong W G, Ross J, Haug J, Johnson T, Feng J Q, Harris S, Wiedemann L M, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003, 425(6960): 836–841
CrossRef
Pubmed
Google scholar
|
[32] |
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh G Y, Suda T. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 2004, 118(2): 149–161
CrossRef
Pubmed
Google scholar
|
[33] |
Kiel M J, Yilmaz O H, Iwashita T, Yilmaz O H, Terhorst C, Morrison S J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 2005, 121(7): 1109–1121
CrossRef
Pubmed
Google scholar
|
[34] |
Kopp H G, Avecilla S T, Hooper A T, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda), 2005, 20(5): 349–356
CrossRef
Pubmed
Google scholar
|
[35] |
Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem, 2008, 283(15): 9499–9503
CrossRef
Pubmed
Google scholar
|
[36] |
Barker A T, Jaffe L F, Vanable J W Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol, 1982, 242(3): R358–R366
Pubmed
|
[37] |
Candia O A. Electrolyte and fluid transport across corneal, conjunctival and lens epithelia. Exp Eye Res, 2004, 78(3): 527–535
CrossRef
Pubmed
Google scholar
|
[38] |
Mukerjee E V, Isseroff R R, Nuccitelli R, Collins S D, Smith R L. Microneedle array for measuring wound generated electric fields. Conf Proc IEEE Eng Med Biol Soc, 2006, 1: 4326–4328
CrossRef
Pubmed
Google scholar
|
[39] |
Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith P J. Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen, 2008, 16(3): 432–441
CrossRef
Pubmed
Google scholar
|
[40] |
McCaig C D, Rajnicek A M, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev, 2005, 85(3): 943–978
CrossRef
Pubmed
Google scholar
|
[41] |
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009, 20(6): 674–682
CrossRef
Pubmed
Google scholar
|
[42] |
Song B, Zhao M, Forrester J V, McCaig C D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA, 2002, 99(21): 13577–13582
CrossRef
Pubmed
Google scholar
|
[43] |
Arocena M, Zhao M, Collinson J M, Song B. A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J Neurosci Res, 2010, 88(15): 3267–3274
CrossRef
Pubmed
Google scholar
|
[44] |
Ariza C A, Fleury A T, Tormos C J, Petruk V, Chawla S, Oh J, Sakaguchi D S, Mallapragada S K. The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev, 2010, 6(4): 585–600
CrossRef
Pubmed
Google scholar
|
[45] |
Hammerick K E, Longaker M T, Prinz F B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun, 2010, 397(1): 12–17
CrossRef
Pubmed
Google scholar
|
[46] |
Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry, 2006, 69(2): 133–141
CrossRef
Pubmed
Google scholar
|
[47] |
Tandon N, Goh B, Marsano A, Chao P H, Montouri-Sorrentino C, Gimble J, Vunjak-Novakovic G. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf Proc IEEE Eng Med Biol Soc, 2009, 2009(1): 6517–6521
Pubmed
|
[48] |
Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res, 2009, 315(20): 3611–3619
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |