Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms

Li LI, Jianxin JIANG

PDF(157 KB)
PDF(157 KB)
Front. Med. ›› 2011, Vol. 5 ›› Issue (1) : 33-39. DOI: 10.1007/s11684-011-0114-1
REVIEW
REVIEW

Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms

Author information +
History +

Abstract

Adult stem cells hold great promise for wound healing and tissue regeneration. Mesenchymal stem cells (MSCs), for example, have been shown to play a role in tissue repair. Research has shown that endogenous bone marrow MSCs or exogenously delivered MSCs migrate to the sites of injury and participate in the repair process. The precise mechanisms underlying migration of MSCs into the injured tissue are still not fully understood, although multiple signaling pathways and molecules were reported, including both chemoattractive factors and endogenous electric fields at wounds. This review will briefly summarize the regulatory facors and signaling transduction pathways involved in migration of MSCs. A better understanding of the molecular mechanisms involved in the migration of MSCs will help us to develop new stem cell-based therapeutic strategies in regenerative medicine.

Keywords

mesenchymal stem cells / migration / molecular mechanisms / signaling pathway

Cite this article

Download citation ▾
Li LI, Jianxin JIANG. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms. Front Med, 2011, 5(1): 33‒39 https://doi.org/10.1007/s11684-011-0114-1

References

[1]
Friedenstein A J, Chailakhyan R K, Latsinik N V, Panasyuk A F, Keiliss-Borok I V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 1974, 17(4): 331–340
CrossRef Pubmed Google scholar
[2]
Ortiz L A, Dutreil M, Fattman C, Pandey A C, Torres G, Go K, Phinney D G. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA, 2007, 104(26): 11002–11007
CrossRef Pubmed Google scholar
[3]
Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, Obata H, Kataoka M, Kodama M, Ishibashi-Ueda H, Kangawa K, Kitamura S, Nagaya N. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol, 2007, 42(1): 88–97
CrossRef Pubmed Google scholar
[4]
Shake J G, Gruber P J, Baumgartner W A, Senechal G, Meyers J, Redmond J M, Pittenger M F, Martin B J. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002; 73(6): 1919–1926
[5]
Zohlnhöfer D, Dibra A, Koppara T, de Waha A, Ripa R S, Kastrup J, Valgimigli M, Schömig A, Kastrati A. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol, 2008, 51(15): 1429–1437
CrossRef Pubmed Google scholar
[6]
Patschan D, Plotkin M, Goligorsky M S. Therapeutic use of stem and endothelial progenitor cells in acute renal injury: ça ira. Curr Opin Pharmacol, 2006, 6(2): 176–183
CrossRef Pubmed Google scholar
[7]
Liang L, Ma T, Chen W, Hu J, Bai X, Li J, Liang T. Therapeutic potential and related signal pathway of adipose-derived stem cell transplantation for rat liver injury. Hepatol Res, 2009, 39(8): 822–832
CrossRef Pubmed Google scholar
[8]
Németh K, Leelahavanichkul A, Yuen P S, Mayer B, Parmelee A, Doi K, Robey P G, Leelahavanichkul K, Koller B H, Brown J M, Hu X, Jelinek I, Star R A, Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med, 2009, 15(1): 42–49
CrossRef Pubmed Google scholar
[9]
Chapel A, Bertho J M, Bensidhoum M, Fouillard L, Young R G, Frick J, Demarquay C, Cuvelier F, Mathieu E, Trompier F, Dudoignon N, Germain C, Mazurier C, Aigueperse J, Borneman J, Gorin N C, Gourmelon P, Thierry D. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med, 2003, 5(12): 1028–1038
CrossRef Pubmed Google scholar
[10]
Ortiz L A, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney D G. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA, 2003, 100(14): 8407–8411
CrossRef Pubmed Google scholar
[11]
Moser B, Willimann K. Chemokines: role in inflammation and immune surveillance. Ann Rheum Dis, 2004, 63 (Suppl 2): ii84–ii89
CrossRef Pubmed Google scholar
[12]
Li Y, Yu X, Lin S, Li X, Zhang S, Song Y H. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun, 2007, 356(3): 780–784
CrossRef Pubmed Google scholar
[13]
Ji J F, He B P, Dheen S T, Tay S S. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells, 2004, 22(3): 415–427
CrossRef Pubmed Google scholar
[14]
Ryu C H, Park S A, Kim S M, Lim J Y, Jeong C H, Jun J A, Oh J H, Park S H, Oh W I, Jeun S S. Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun, 2010, 398(1): 105–110
CrossRef Pubmed Google scholar
[15]
Wynn R F, Hart C A, Corradi-Perini C, O’Neill L, Evans C A, Wraith J E, Fairbairn L J, Bellantuono I. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 2004, 104(9): 2643–2645
CrossRef Pubmed Google scholar
[16]
Son B R, Marquez-Curtis L A, Kucia M, Wysoczynski M, Turner A R, Ratajczak J, Ratajczak M Z, Janowska-Wieczorek A. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 2006, 24(5): 1254–1264
CrossRef Pubmed Google scholar
[17]
Tsai L K, Leng Y, Wang Z, Leeds P, Chuang D M. The mood stabilizers valproic acid and lithium enhance mesenchymal stem cell migration via distinct mechanisms. Neuropsychopharmacology, 2010, 35(11): 2225–2237
CrossRef Pubmed Google scholar
[18]
Ip J E, Wu Y, Huang J, Zhang L, Pratt R E, Dzau V J. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell, 2007, 18(8): 2873–2882
CrossRef Pubmed Google scholar
[19]
Sordi V, Malosio M L, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone B E, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 2005, 106(2): 419–427
CrossRef Pubmed Google scholar
[20]
Phinney D G, Prockop D J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 2007, 25(11): 2896–2902
CrossRef Pubmed Google scholar
[21]
Rüster B, Göttig S, Ludwig R J, Bistrian R, Müller S, Seifried E, Gille J, Henschler R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 2006, 108(12): 3938–3944
CrossRef Pubmed Google scholar
[22]
Sackstein R, Merzaban J S, Cain D W, Dagia N M, Spencer J A, Lin C P, Wohlgemuth R. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med, 2008, 14(2): 181–187
CrossRef Pubmed Google scholar
[23]
Jeon E S, Song H Y, Kim M R, Moon H J, Bae Y C, Jung J S, Kim J H. Sphingosylphosphorylcholine induces proliferation of human adipose tissue-derived mesenchymal stem cells via activation of JNK. J Lipid Res, 2006, 47(3): 653–664
CrossRef Pubmed Google scholar
[24]
Song H Y, Lee M J, Kim M Y, Kim K H, Lee I H, Shin S H, Lee J S, Kim J H. Lysophosphatidic acid mediates migration of human mesenchymal stem cells stimulated by synovial fluid of patients with rheumatoid arthritis. Biochim Biophys Acta, 2010, 1801(1): 23–30
Pubmed
[25]
Song H Y, Lee M J, Kim M Y, Kim K H, Lee I H, Shin S H, Lee J S, Kim J H. Lysophosphatidic acid mediates migration of human mesenchymal stem cells stimulated by synovial fluid of patients with rheumatoid arthritis. Biochim Biophys Acta, 2010, 1801(1): 23–30
Pubmed
[26]
Jaganathan B G, Ruester B, Dressel L, Stein S, Grez M, Seifried E, Henschler R. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells, 2007, 25(8): 1966–1974
CrossRef Pubmed Google scholar
[27]
Fu X, Han B, Cai S, Lei Y, Sun T, Sheng Z. Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing. Wound Repair Regen, 2009, 17(2): 185–191
CrossRef Pubmed Google scholar
[28]
Hemeda H, Jakob M, Ludwig A K, Giebel B, Lang S, Brandau S. Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells Dev, 2010, 19(5): 693–706
CrossRef Pubmed Google scholar
[29]
Zhang A, Wang Y, Ye Z, Xie H, Zhou L, Zheng S. Mechanism of TNF-α-induced migration and hepatocyte growth factor production in human mesenchymal stem cells. J Cell Biochem, 2010, 111(2): 469–475
CrossRef Pubmed Google scholar
[30]
Fischer-Valuck B W, Barrilleaux B L, Phinney D G, Russell K C, Prockop D J, O’Connor K C. Migratory response of mesenchymal stem cells to macrophage migration inhibitory factor and its antagonist as a function of colony-forming efficiency. Biotechnol Lett, 2010, 32(1): 19–27
CrossRef Pubmed Google scholar
[31]
Meng E, Guo Z, Wang H, Jin J, Wang J, Wang H, Wu C, Wang L. High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway. Stem Cells Dev, 2008, 17(4): 805–813
CrossRef Pubmed Google scholar
[32]
Wang L, Li Y, Chen X, Chen J, Gautam S C, Xu Y, Chopp M. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology, 2002, 7(2): 113–117
CrossRef Pubmed Google scholar
[33]
Wang L, Li Y, Chen J, Gautam S C, Zhang Z, Lu M, Chopp M. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol, 2002, 30(7): 831–836
CrossRef Pubmed Google scholar
[34]
Dwyer R M, Potter-Beirne S M, Harrington K A, Lowery A J, Hennessy E, Murphy J M, Barry F P, O’Brien T, Kerin M J. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res, 2007, 13(17): 5020–5027
CrossRef Pubmed Google scholar
[35]
Xu F, Shi J, Yu B, Ni W, Wu X, Gu Z. Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro. Oncol Rep, 2010, 23(6): 1561–1567
CrossRef Pubmed Google scholar
[36]
Picinich S C, Glod J W, Banerjee D. Protein kinase C zeta regulates interleukin-8-mediated stromal-derived factor-1 expression and migration of human mesenchymal stromal cells. Exp Cell Res, 2010, 316(4): 593–602
CrossRef Pubmed Google scholar
[37]
Ponte A L, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, Charbord P, Domenech J. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells, 2007, 25(7): 1737–1745
CrossRef Pubmed Google scholar
[38]
Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini P M, Prat M, Di Nardo P. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells, 2006, 24(1): 23–33
CrossRef Pubmed Google scholar
[39]
Fiedler J, Röderer G, Günther K P, Brenner R E. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem, 2002, 87(3): 305–312
CrossRef Pubmed Google scholar
[40]
Fiedler J, Brill C, Blum W F, Brenner R E. IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun, 2006, 345(3): 1177–1183
CrossRef Pubmed Google scholar
[41]
Tamama K, Fan V H, Griffith L G, Blair H C, Wells A. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells, 2006, 24(3): 686–695
CrossRef Pubmed Google scholar
[42]
Kollet O, Shivtiel S, Chen Y Q, Suriawinata J, Thung S N, Dabeva M D, Kahn J, Spiegel A, Dar A, Samira S, Goichberg P, Kalinkovich A, Arenzana-Seisdedos F, Nagler A, Hardan I, Revel M, Shafritz D A, Lapidot T. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest, 2003, 112(2): 160–169
Pubmed
[43]
Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E, Trent J, Peiper S, Zembala M, Ratajczak J, Houghton P, Janowska-Wieczorek A, Ratajczak M Z. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res, 2003, 63(22): 7926–7935
Pubmed
[44]
Demetri G D, Griffin J D. Granulocyte colony-stimulating factor and its receptor. Blood, 1991, 78(11): 2791–2808
Pubmed
[45]
Yanqing Z, Yu-Min L, Jian Q, Bao-Guo X, Chuan-Zhen L. Fibronectin and neuroprotective effect of granulocyte colony-stimulating factor in focal cerebral ischemia. Brain Res, 2006, 1098(1): 161–169
CrossRef Pubmed Google scholar
[46]
Shyu W C, Lin S Z, Yang H I, Tzeng Y S, Pang C Y, Yen P S, Li H. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation, 2004, 110(13): 1847–1854
CrossRef Pubmed Google scholar
[47]
Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine D M, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA, 2001, 98(18): 10344–10349
CrossRef Pubmed Google scholar
[48]
Watari K, Asano S, Shirafuji N, Kodo H, Ozawa K, Takaku F, Kamachi S. Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood, 1989, 73(1): 117–122
Pubmed
[49]
Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester J V, Bourne H R, Devreotes P N, McCaig C D, Penninger J M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 2006, 442(7101): 457–460
CrossRef Pubmed Google scholar
[50]
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009, 20(6): 674–682
CrossRef Pubmed Google scholar
[51]
Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol, 2003, 58: 1–26
CrossRef Pubmed Google scholar
[52]
Reid B, Song B, McCaig C D, Zhao M. Wound healing in rat cornea: the role of electric currents. FASEB J, 2005, 19(3): 379–386
CrossRef Pubmed Google scholar
[53]
Song B, Zhao M, Forrester J V, McCaig C D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA, 2002, 99(21): 13577–13582
CrossRef Pubmed Google scholar
[54]
Hammerick K E, Longaker M T, Prinz F B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun, 2010, 397(1): 12–17
CrossRef Pubmed Google scholar
[55]
Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry, 2006, 69(2): 133–141
CrossRef Pubmed Google scholar
[56]
Tandon N, Goh B, Marsano A, Chao PH, Montouri-Sorrentino C, Gimble J, Vunjak-Novakovic G. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009: 6517–6521.
[57]
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009, 20(6): 674–682
CrossRef Pubmed Google scholar
[58]
Zha Y H, He J F, Mei Y W, Yin T, Mao L. Zinc-finger transcription factor snail accelerates survival, migration and expression of matrix metalloproteinase-2 in human bone mesenchymal stem cells. Cell Biol Int, 2007, 31(10): 1089–1096
CrossRef Pubmed Google scholar
[59]
Schmidt A, Ladage D, Schinköthe T, Klausmann U, Ulrichs C, Klinz F J, Brixius K, Arnhold S, Desai B, Mehlhorn U, Schwinger R H, Staib P, Addicks K, Bloch W. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells, 2006, 24(7): 1750–1758
CrossRef Pubmed Google scholar
[60]
Zhao M, Agius-Fernandez A, Forrester J V, McCaig C D. Directed migration of corneal epithelial sheets in physiological electric fields. Invest Ophthalmol Vis Sci, 1996, 37(13): 2548–2558
Pubmed
[61]
Farboud B, Nuccitelli R, Schwab I R, Isseroff R R. DC electric fields induce rapid directional migration in cultured human corneal epithelial cells. Exp Eye Res, 2000, 70(5): 667–673
CrossRef Pubmed Google scholar
[62]
Wang E, Zhao M, Forrester J V, MCCaig C D. Re-orientation and faster, directed migration of lens epithelial cells in a physiological electric field. Exp Eye Res, 2000, 71(1): 91–98
CrossRef Pubmed Google scholar
[63]
Pu J, McCaig C D, Cao L, Zhao Z, Segall J E, Zhao M. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J Cell Sci, 2007, 120(Pt 19): 3395–3403
CrossRef Pubmed Google scholar
[64]
Yun D H, Song H Y, Lee M J, Kim M R, Kim M Y, Lee J S, Kim J H. Thromboxane A(2) modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells. Exp Mol Med, 2009, 41(1): 17–24
CrossRef Pubmed Google scholar
[65]
Li S, Deng Y, Feng J, Ye W. Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Int, 2009, 33(3): 411–418
CrossRef Pubmed Google scholar
[66]
Kang Y J, Jeon E S, Song H Y, Woo J S, Jung J S, Kim Y K, Kim J H. Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem, 2005, 95(6): 1135–1145
CrossRef Pubmed Google scholar
[67]
Gu Y, Filippi M D, Cancelas J A, Siefring J E, Williams E P, Jasti A C, Harris C E, Lee A W, Prabhakar R, Atkinson S J, Kwiatkowski D J, Williams D A. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science, 2003, 302(5644): 445–449
CrossRef Pubmed Google scholar
[68]
Lee M J, Jeon E S, Lee J S, Cho M, Suh D S, Chang C L, Kim J H. Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells. J Cell Biochem, 2008, 104(2): 499–510
CrossRef Pubmed Google scholar
[69]
Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell, 2005, 97(3): 185–196
CrossRef Pubmed Google scholar
[70]
Qiang Y W, Walsh K, Yao L, Kedei N, Blumberg P M, Rubin J S, Shaughnessy J Jr, Rudikoff S. Wnts induce migration and invasion of myeloma plasma cells. Blood, 2005, 106(5): 1786–1793
CrossRef Pubmed Google scholar
[71]
Shang Y C, Wang S H, Xiong F, Zhao C P, Peng F N, Feng S W, Li M S, Li Y, Zhang C. Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells. Acta Pharmacol Sin, 2007, 28(11): 1761–1774
CrossRef Pubmed Google scholar
[72]
Karp J M, Leng Teo G S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell, 2009, 4(3): 206–216
CrossRef Pubmed Google scholar
[73]
Barrilleaux B L, Fischer-Valuck B W, Gilliam J K, Phinney D G, O’Connor K C. Activation of CD74 inhibits migration of human mesenchymal stem cells.In Vitro Cell Dev Biol Anim, 2010, 46(6): 566–572
CrossRef Pubmed Google scholar
[74]
De Becker A, Van Hummelen P, Bakkus M, Vande Broek I, De Wever J, De Waele M, Van Riet I. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica, 2007, 92(4): 440–449
CrossRef Pubmed Google scholar
[75]
Rombouts W J, Ploemacher R E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 2003, 17(1): 160–170
CrossRef Pubmed Google scholar

Acknowledgments

We are very grateful to Professor Min Zhao (University of California, Davis) for his great help of critical reading of the manuscript. This work is supported by Key Program of National Nature Science Foundation of China (81030037) and Open Fund of State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (SKLZZ200804)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(157 KB)

Accesses

Citations

Detail

Sections
Recommended

/