The influence of brain death on donor liver and the potential mechanisms of protective intervention
Shui-Jun ZHANG, Tao WANG
The influence of brain death on donor liver and the potential mechanisms of protective intervention
Brain-dead donors have become one of the main sources of organs for transplantation in Western countries. The quality of donor organs is closely related to the outcome of the transplantation. Experimental studies have confirmed the inferior graft survival of livers from brain-dead donors compared with those from living donors. Studies conducted in the past 10 years have shown that brain death is associated with effects on the decreased donor organ quality. However, whether the decrease in the viability of donor organs is caused by brain death or by the events before and after brain death remains uncertain. The purpose of this review is to introduce the advances and controversies regarding the influence of brain death on the viability of donor livers and to summarize the mechanisms of the different protective interventions for donor livers.
[1] |
van der Hoeven J A B, Ter Horst G J, Molema G, de Vos P, Girbes A R, Postema F, Freund R L, Wiersema J, van Schilfgaarde R, Ploeg R J. Effects of brain death and hemodynamic status on function and immunologic activation of the potential donor liver in the rat. Ann Surg, 2000, 232(6): 804–813
CrossRef
Pubmed
Google scholar
|
[2] |
Pratschke J, Wilhelm M J, Kusaka M, Basker M, Cooper D K, Hancock W W, Tilney N L. Brain death and its influence on donor organ quality and outcome after transplantation. Transplantation, 1999, 67(3): 343–348
CrossRef
Pubmed
Google scholar
|
[3] |
Bugge J F. Brain death and its implications for management of the potential organ donor. Acta Anaesthesiol Scand, 2009, 53(10): 1239–1250
CrossRef
Pubmed
Google scholar
|
[4] |
Chen E P, Bittner H B, Kendall S W, Van Trigt P. Hormonal and hemodynamic changes in a validated animal model of brain death. Crit Care Med, 1996, 24(8): 1352–1359
CrossRef
Pubmed
Google scholar
|
[5] |
Wilhelm M J, Pratschke J, Laskowski I A, Paz D M, Tilney N L. Brain death and its impact on the donor heart-lessons from animal models. J Heart Lung Transplant, 2000, 19(5): 414–418
CrossRef
Pubmed
Google scholar
|
[6] |
Novitzky D. Selection and management of cardiac allograft donors. Curr Opin Cardiol, 1996, 11(2): 174–182
CrossRef
Pubmed
Google scholar
|
[7] |
Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol, 1985, 17(4): 291–306
CrossRef
Pubmed
Google scholar
|
[8] |
Novitzky D, Wicomb W N, Cooper D K, Rose A G, Reichart B. Prevention of myocardial injury during brain death by total cardiac sympathectomy in the Chacma baboon. Ann Thorac Surg, 1986, 41(5): 520–524
CrossRef
Pubmed
Google scholar
|
[9] |
Novitzky D, Rose A G, Cooper D K. Injury of myocardial conduction tissue and coronary artery smooth muscle following brain death in the baboon. Transplantation, 1988, 45(5): 964–966
CrossRef
Pubmed
Google scholar
|
[10] |
Shivalkar B, Van Loon J, Wieland W, Tjandra-Maga T B, Borgers M, Plets C, Flameng W. Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation, 1993, 87(1): 230–239
Pubmed
|
[11] |
Satur C M, Martin W, Darracott-Cankovic S, Morrison J, Wheatley D J. An experimental method to induce variable patterns of brain death and myocardial injury. Transplant Proc, 1998, 30(1): 211–213
CrossRef
Pubmed
Google scholar
|
[12] |
De Luca F A, Cruz R J Jr, Garrido Adel P, Prist R, Rocha-E-Silva M. Initial hepatosplanchnic blood flow distribution and oxygen metabolism in experimental model of hypotensive brain death. Ann Transplant, 2009, 14(1): 38–46
Pubmed
|
[13] |
Steinhoff G, Behrend M, Schrader B, Duijvestijn A M, Wonigeit K. Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia. Lack of ELAM-1 and CD62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-1, ICAM-1, ICAM-2, and LFA-3. Am J Pathol, 1993, 142(2): 481–488
Pubmed
|
[14] |
Steinhoff G, Brandt M. Adhesion molecules in liver transplantation. Hepatogastroenterology, 1996, 43(11): 1117–1123
Pubmed
|
[15] |
Hoffmann M W, Wonigeit K, Steinhoff G, Herzbeck H, Flad H D, Pichlmayr R. Production of cytokines (TNF-alpha, IL-1-beta) and endothelial cell activation in human liver allograft rejection. Transplantation, 1993, 55(2): 329–335
CrossRef
Pubmed
Google scholar
|
[16] |
Omura T, Ishikura H, Nakajima Y, Kimura J, Ito K, Isai H, Tamatani T, Miyasaka M, Yoshiki T, Uchino J. The expression of LFA-1/ICAM-1 in liver transplantation in rats. Transplant Proc, 1992, 24(4): 1618–1619
Pubmed
|
[17] |
Kuecuek O, Mantouvalou L, Klemz R, Kotsch K, Volk H D, Jonas S, Wesslau C, Tullius S, Neuhaus P, Pratschke J. Significant reduction of proinflammatory cytokines by treatment of the brain-dead donor. Transplant Proc, 2005, 37(1): 387–388
CrossRef
Pubmed
Google scholar
|
[18] |
Olinga P, van der Hoeven J A B, Merema M T, Freund R L, Ploeg R J, Groothuis G M. The influence of brain death on liver function. Liver Int, 2005, 25(1): 109–116
CrossRef
Pubmed
Google scholar
|
[19] |
Weiss S, Kotsch K, Francuski M, Reutzel-Selke A, Mantouvalou L, Klemz R, Kuecuek O, Jonas S, Wesslau C, Ulrich F, Pascher A, Volk H D, Tullius S G, Neuhaus P, Pratschke J. Brain death activates donor organs and is associated with a worse I/R injury after liver transplantation. Am J Transplant, 2007, 7(6): 1584–1593
CrossRef
Pubmed
Google scholar
|
[20] |
Zhang S, Zhu C, Wu Y, Zhai W, Shi J, Song Y, Li J, Li Z, Zhang G. Brain death affects the hepatic immunogenicity of pigs. Transplant Proc, 2008, 40(7): 2159–2162
CrossRef
Pubmed
Google scholar
|
[21] |
Pratschke J, Neuhaus P, Tullius S G. What can be learned from brain-death models? Transpl Int, 2005, 18(1): 15–21
CrossRef
Pubmed
Google scholar
|
[22] |
van der Hoeven J A, Moshage H, Schuurs T, Nijboer M, Van Schilfgaarde R, Ploeg R J. Brain death induces apoptosis in donor liver of the rat. Transplantation, 2003, 76(8): 1150–1154
CrossRef
Pubmed
Google scholar
|
[23] |
Pérez López S, Vázquez Moreno N, Escudero Augusto D, Astudillo González A, Alvarez Menéndez F, Goyache Goñi F, Otero Hernández J. A molecular approach to apoptosis in the human heart during brain death. Transplantation, 2008, 86(7): 977–982
CrossRef
Pubmed
Google scholar
|
[24] |
Adrie C, Monchi M, Fulgencio J P, Cottias P, Haouache H, Alvarez-Gonzalvez A, Guerrini P, Cavaillon J M, Adib-Conquy M. Immune status and apoptosis activation during brain death. Shock, 2010, 33(4): 353–362
CrossRef
Pubmed
Google scholar
|
[25] |
Patel T, Gores G J. Apoptosis and hepatobiliary disease. Hepatology, 1995, 21(6): 1725–1741
Pubmed
|
[26] |
Daemen M A, van ’t Veer C, Denecker G, Heemskerk V H, Wolfs T G, Clauss M, Vandenabeele P, Buurman W A. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest, 1999, 104(5): 541–549
CrossRef
Pubmed
Google scholar
|
[27] |
Nagareda T, Kinoshita Y, Tanaka A, Hasuike Y, Terada N, Nishizawa Y, Fujita M Q, Kuroda H, Yawata K, Aozasa K, Sakano T S U T O M U, Sugimoto T S U Y O S H I, Kotoh K I Y O S H I. Clinicopathological study of livers from brain-dead patients treated with a combination of vasopressin and epinephrine. Transplantation, 1989, 47(5): 792–797
CrossRef
Pubmed
Google scholar
|
[28] |
Novitzky D. Detrimental effects of brain death on the potential organ donor. Transplant Proc, 1997, 29(8): 3770–3772
CrossRef
Pubmed
Google scholar
|
[29] |
van der Hoeven J A, Lindell S, van Schilfgaarde R, Molema G, Ter Horst G J, Southard J H, Ploeg R J. Donor brain death reduces survival after transplantation in rat livers preserved for 20 hr. Transplantation, 2001, 72(10): 1632–1636
CrossRef
Pubmed
Google scholar
|
[30] |
Okamoto S, Corso C O, Nolte D, Rascher W, Thiery J, Yamaoka Y, Messmer K. Impact of brain death on hormonal homeostasis and hepatic microcirculation of transplant organ donors. Transpl Int, 1998, 11 (Suppl 1): S404–S407
Pubmed
|
[31] |
Lin H, Yamamoto Y, Okamoto R, Ueda J, Yamamoto S, Mori K, Tanaka K, Yamaoka Y, Ozawa K. Hepatic functional difference between brain death hypotension and hypovolemic hypotension in liver donation. Transplant Proc, 1989, 21(1 Pt 2): 2389–2391
Pubmed
|
[32] |
Toyama H, Takada M, Suzuki Y, Kuroda Y. Brain death-induced expression of ICAM-1 and VCAM-1 on rat hepatocytes. Hepatogastroenterology, 2003, 50(54): 1854–1856
Pubmed
|
[33] |
Jassem W, Koo D D, Cerundolo L, Rela M, Heaton N D, Fuggle S V. Leukocyte infiltration and inflammatory antigen expression in cadaveric and living-donor livers before transplant. Transplantation, 2003, 75(12): 2001–2007
CrossRef
Pubmed
Google scholar
|
[34] |
Zhang S J, Zhai W L, Song Y, Shi J H, Li Z H, Li J, Chen S H. How brain-dead state affects the hepatic morphology and function of Ba-Ma mini pigs and its mechanism. Zhonghua Yi Xue Za Zhi, 2006, 86(18): 1244–1248 (in Chinese)
Pubmed
|
[35] |
Compagnon P, Wang H, Lindell S L, Ametani M S, Mangino M J, D’Alessandro A M, Southard J H. Brain death does not affect hepatic allograft function and survival after orthotopic transplantation in a canine model. Transplantation, 2002, 73(8): 1218–1227
CrossRef
Pubmed
Google scholar
|
[36] |
Golling M, Mehrabi A, Blum K, Jahnke C, Kellner H, Bud O, Hashemi B, Breitkreutz R, Becker-Brandenburg K, Schemmer P, Gebhard M M, Herfarth C, Kraus T. Effects of hemodynamic instability on brain death-induced prepreservation liver damage. Transplantation, 2003, 75(8): 1154–1159
CrossRef
Pubmed
Google scholar
|
[37] |
Novitzky D, Cooper D K, Morrell D, Isaacs S. Change from aerobic to anaerobic metabolism after brain death, and reversal following triiodothyronine therapy. Transplantation, 1988, 45(1): 32–36
CrossRef
Pubmed
Google scholar
|
[38] |
Zhu C, Li J, Zhang G, Zhang Y, Zhai W, Shi J, Li Z, Li J, Zhang S. Brain death disrupts structure and function of pig liver. Transplant Proc, 2010, 42(3): 733–736
CrossRef
Pubmed
Google scholar
|
[39] |
Kusaka M, Pratschke J, Wilhelm M J, Ziai F, Zandi-Nejad K, Mackenzie H S, Hancock W W, Tilney N L. Activation of inflammatory mediators in rat renal isografts by donor brain death. Transplantation, 2000, 69(3): 405–410
CrossRef
Pubmed
Google scholar
|
[40] |
Pratschke J, Kofla G, Wilhelm M J, Vergopoulos A, Laskowski I, Shaw G D, Tullius S G, Volk H D, Neuhaus P, Tilney N L. Improvements in early behavior of rat kidney allografts after treatment of the brain-dead donor. Ann Surg, 2001, 234(6): 732–740
CrossRef
Pubmed
Google scholar
|
[41] |
Wu L W, He X S, Tai Q, Ju W Q, Ma Y, Wang D P, Zhu X F, Huang J F. Comparison of the short—term outcomes of liver transplant recipients receiving liver graft from brain-death and non-heart-beating donors. Nanfang Yi Ke Da Xue Xue Bao, 2008, 28(12): 2204–2206 (in Chinese)
|
[42] |
Dubbeld J, Hoekstra H, Farid W, Ringers J, Porte R J, Metselaar H J, Baranski A G, Kazemier G, van den Berg A P, van Hoek B. Similar liver transplantation survival with selected cardiac death donors and brain death donors. Br J Surg, 2010, 97(5): 744–753
CrossRef
Pubmed
Google scholar
|
[43] |
Koo D D, Welsh K I, McLaren A J, Roake J A, Morris P J, Fuggle S V. Cadaver versus living donor kidneys: impact of donor factors on antigen induction before transplantation. Kidney Int, 1999, 56(4): 1551–1559
CrossRef
Pubmed
Google scholar
|
[44] |
Kim Y S, Lim C S, Kim S, Lee J S, Lee S, Kim S T, Kim H J, Chae D W. Cadaveric renal allograft at the time of implantation has the similar immunological features with the rejecting allograft. Transplantation, 2000, 70(7): 1080–1085
CrossRef
Pubmed
Google scholar
|
[45] |
Schwarz C, Regele H, Steininger R, Hansmann C, Mayer G, Oberbauer R. The contribution of adhesion molecule expression in donor kidney biopsies to early allograft dysfunction. Transplantation, 2001, 71(11): 1666–1670
CrossRef
Pubmed
Google scholar
|
[46] |
Fuggle S V, Koo D D. Cell adhesion molecules in clinical renal transplantation. Transplantation, 1998, 65(6): 763–769
CrossRef
Pubmed
Google scholar
|
[47] |
Takada M, Nadeau K C, Hancock W W, Mackenzie H S, Shaw G D, Waaga A M, Chandraker A, Sayegh M H, Tilney N L. Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation, 1998, 65(12): 1533–1542
CrossRef
Pubmed
Google scholar
|
[48] |
Choi A M, Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol, 1996, 15(1): 9–19
Pubmed
|
[49] |
Maines M D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J, 1988, 2(10): 2557–2568
Pubmed
|
[50] |
Maines M D. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol, 1997, 37(1): 517–554
CrossRef
Pubmed
Google scholar
|
[51] |
Kotsch K, Ulrich F, Reutzel-Selke A, Pascher A, Faber W, Warnick P, Hoffman S, Francuski M, Kunert C, Kuecuek O, Schumacher G, Wesslau C, Lun A, Kohler S, Weiss S, Tullius S G, Neuhaus P, Pratschke J. Methylprednisolone therapy in deceased donors reduces inflammation in the donor liver and improves outcome after liver transplantation: a prospective randomized controlled trial. Ann Surg, 2008, 248(6): 1042–1050
CrossRef
Pubmed
Google scholar
|
[52] |
van der Woude F J, Schnuelle P, Yard B A. Preconditioning strategies to limit graft immunogenicity and cold ischemic organ injury. J Investig Med, 2004, 52(5): 323–329
CrossRef
Pubmed
Google scholar
|
[53] |
Yard B, Beck G, Schnuelle P, Braun C, Schaub M, Bechtler M, Göttmann U, Xiao Y, Breedijk A, Wandschneider S, Lösel R, Sponer G, Wehling M, van der Woude F J. Prevention of cold-preservation injury of cultured endothelial cells by catecholamines and related compounds. Am J Transplant, 2004, 4(1): 22–30
CrossRef
Pubmed
Google scholar
|
[54] |
Zhang S J, Shi J H, Tang Z H, Wu Y, Zhai W L, Li Z H. The protection effects of glycine pretreatment on brain-dead donor liver. Zhonghua Qi Guan Yi Zhi Za Zhi, 2004, 25(5): 264–266 (in Chinese)
|
[55] |
Wheeler M D, Ikejema K, Enomoto N, Stacklewitz R F, Seabra V, Zhong Z, Yin M, Schemmer P, Rose M L, Rusyn I, Bradford B, Thurman R G. Glycine: a new anti-inflammatory immunonutrient. Cell Mol Life Sci, 1999, 56(9-10): 843–856
CrossRef
Pubmed
Google scholar
|
[56] |
Schemmer P, Bradford B U, Rose M L, Bunzendahl H, Raleigh J A, Lemasters J J, Thurman R G. Intravenous glycine improves survival in rat liver transplantation. Am J Physiol, 1999, 276(4 Pt 1): G924–G932
|
[57] |
Li J, Zhang S, Wu Y, Guo W, Zhang Y, Zhai W. Protective effects of N-acetylcysteine on the liver of brain-dead Ba-Ma mini pig. Transplant Proc, 2010, 42(1): 195–199
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |