Journal home Browse Just accepted

Just accepted

The manuscripts published below have been examined by the peer-review process and have been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Higher Education Press (HEP) provides “Just Accepted” as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an Online First article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain. In no event shall HEP be held responsible for errors or consequences arising from the use of any information contained in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital Object Identifier (DOI(r)), which is identical for all formats of publication.
  • Select all
  • Xueyuan Shen, Guodong Qi, Jiawei Liang, Ruichen Wang, Jun Xu, Feng Deng
    Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-024-4168-4

    Heterogeneous glycerol (GLY) oxidation offers a promising route for the production of lactic acid (LA), a key monomer in biodegradable bioplastics. However, the specific reaction pathways remain poorly understood. This study presents a mechanistic investigation of GLY oxidation to LA using Pt/Sn-MFI catalysts. Characterizations via DR-UV-Vis spectroscopy, 119Sn NMR, and TEM reveal the formation of zeolite framework Sn and well-dispersed Pt nanoparticles in Pt/Sn-MFI. The Lewis acidity of framework Sn in MFI zeolite is confirmed through 31P NMR probe techniques. GLY conversion and LA selectivity correlate strongly with framework Sn concentration and the presence of Pt nanoparticles. In situ13C solid-state NMR experiments, complemented by two-dimensional 13C correlation NMR, allow real-time monitoring of GLY conversion and identification of various mobile and rigid (surface-adsorbed) species. Results indicate that GLY preferentially transforms to LA via a dihydroxyacetone (DHA) intermediate, facilitated by the Pt-Sn synergistic effect. However, accumulation of surface-adsorbed LA on Sn sites promotes consecutive oxidation of GLY to glyceric acid, tartaric acid, and ultimately CO2.

  • Zeping Luo, Liwei Pan
    Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-024-4102-9

    A new class of Daidzein derivatives were developed, and their protective effects on neuronal cells and their mechanisms were examined. The protective effects of Daidzein derivatives against oxygen and glucose deprivation/reoxygenation (OGD/R) injury in HT22 cells were evaluated via a Cell Counting Kit 8 (CCK-8) assay. Biomarkers associated with ferroptosis, including changes in reactive oxygen species (ROS), lipid peroxidation, ferrous ion (Fe2+), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) levels, were detected via fluorescent probes and specific kits. In addition, the protein expression levels of glutathione peroxidase 4 (GPX4), recombinant solute carrier family 7, member 11 (SLC7A11 or xCT) and nuclear Factor 2 (Nrf2) were analyzed via Western blotting. The newly synthesized Daidzein derivative outperforms not only its parent compound, especially derivative 3, in improving the viability of OGD/R-treated HT22 cells but also edaravone, a positive control drug. This study further revealed the mechanism of action of derivative 3: reducing the level of ROS and lipid peroxidation induced by OGD/R in HT22 cells, restoring SOD and GSH activities, reducing MDA and Fe2+ accumulation, and increasing the protein expression of GPX4, xCT and Nrf2. Derivative 3 has significant neuroprotective effects, and its mechanism may involve activating the Nrf2/xCT/GPX4 pathway and inhibiting neuronal ferroptosis. This study provides a new perspective for neuroprotection research and a direction for drug development.

  • Xiaotong Zhu, Xinyu Li, Li Qi, Rongyue Zhang, Nan Li, Xiaonan He, Juan Qiao
    Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-025-4203-0

    In this study, Pepsin@AuNPs (Pep@AuNPs) and Trypsin@AuNPs (Try@AuNPs) were synthesized by a microfluidic droplet system using Pepsin and Trypsin as protection reagents and NaOH as reducing reagents. Compared to the synthesis method in a flask, the AuNPs synthesized by the microfluidic droplet system demonstrated uniform nucleation, superior ultraviolet absorption performance, high stability and short preparation cycles (15 min). The detection range of Cu(II) by Pep@AuNPs was 1.0–100.0 µmol/L and the detection limit was 0.3 µmol/L. The detection range of L-Cysteine by Try@AuNPs was 0.3–250.0 mmol/L and the detection limit was 0.1 mmol/L. This universal method provides an effective strategy for the detection of bioactive molecules, such as metal ions and amino acids by AuNPs with protein as a protective agent.

  • Wenting Lu, Xiao Zhao
    Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-025-4207-9

    Atomically dispersed catalysts, i.e., single-atom catalysts (SACs), have attracted considerable interest because of their 100% atom utilization and unique geometric and electronic structures relative to nanoparticles. Atomic manipulation enables the construction of well-defined active sites on an atom-by-atom basis, which is particularly intriguing for electrocatalysis. Bi-atom catalysts (BACs) represent an important branch, where atomic pairs can markedly enhance the efficiency and selectivity of electrocatalysis. Emerging as a new subclass, ordered multiatom catalysts (OMACs) have received significant attention recently. Unlike randomly distributed single atoms, the OMACs possess ordered atomic arrangements, like atomic arrays and ordered single-atom alloys. Geometrically, this order could enhance intrinsic activity and reaction selectivity by making interatomic distance just right or customizing atomic arrangements for the lower activation energy pathway, and simultaneously improve the density of active sites to some extent. Electronically, this order may induce new electronic states and/or strong orbital hybridization between neighboring atoms, thereby enabling unexpected activity. The ensemble effect and/or synergistic effect would become feasible by rational regulation of atomic arrangements and components of OMACs. We herein reviewed the recent advance from single-atom to biatom and ordered multiatom mainly emphasizing OMACs, discussed their synthesis, characterizations, and electrocatalytic applications, and finally proposed some challenges and prospects for better developing single-atom catalysis.

  • Shengrong Yan, Lan Zhang, Songhu Shi, Yanyan Ren, Wenhao Liu, Yujie Li, Fang Duan, Shuanglong Lu, Mingliang Du, Mingqing Chen
    Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-025-4202-1

    The photocatalytic CO2 cycloaddition to prepare high value-added chemicals, such as cyclic carbonates (CCs) under mild conditions is an effective strategy to realize carbon neutrality. Herein, through a three-step reaction, the porphyrin-based covalent organic polymer with bimetallic active sites (Fe-COP-Zr) is successfully obtained by coordinating Fe2+ and Zr4+ with porphyrin and bipyridine (Bpy), respectively. Owing to excellent photosensitivity of porphyrin moieties, Fe-COP-Zr exhibits outstanding visible light absorption, which is very important for the production of photogenerated carriers. Consequently, Fe-COP-Zr shows high photocatalytic performance towards CO2 cycloaddition with a yield of 12.1 mmol/h, which is 6 times higher than that of pure covalent organic polymer (COP) and 3 times higher than that of monometallic Fe-COP. The reason for this excellent photocatalytic CO2 cycloaddition performance may be ascribed to the synergistic effect of Fe and Zr sites. The photogenerated electrons are easily injected into epichlorohydrin (ECH) through Fe—O bonds to form affluent electron transition state, and interact with Zr4+ as Lewis acid sites for the ring-opening of ECH, which is the rate-determining step for the visible light boosted chemical fixation of CO2 into CCs. This work might provide some insights for design and preparation of COPs with multiple active sites to modulate their photocatalytic activities.

  • Huangyijia Sun, Xiaohui Li, Xiaoling Zeng, Jian Liu, Aydar Rakhmatullin, Chenjie Lou, Mingxue Tang, Alberto Jose Fernández-Carrión, Xiaojun Kuang
    Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-025-4224-8

    Sodium-ion conducting materials in sodium-ion battery have drawn widespread attention in energy storage technologies due to the advantages of low cost, high performance, and efficient environmental adaptability. Herein, bond valence site energy (BVSE) calculations were used to predict the sodium ion electrical performances by the Na nonstoichiometric modifications, and we have carried out fine experiments to modulate the sodium ion conductivity of Na xZn2TeO6 guided by BVSE calculations. The optimized composition Na2.1Zn2TeO6 shows the superior sodium ionic conductivity of 5.3×10−3 S/cm at 190 °C, with a low activation energy of 0.28 eV. The excess Na preferentially occupies the Na1 site with tetrahedral voids, which has a higher capacity for sodium ion migration, as revealed by the combined neutron powder diffraction technique with the 1D and 2D 23Na solid-state NMR technique, which is responsible for the variations in sodium ion conductivity. In addition, it is worth noting that the resulting Na2.1Zn2TeO6 material maintains superior thermal and phase stability, as well as approximately the same thermal expansion coefficient values even during the temperature rise and fall cycles in the temperature range of 25–800 °C. Furthermore, molecular dynamics simulations revealed that the sodium ions exhibit longrange anisotropic migration within the Na+ interlayers of Na2.1Zn2TeO6.

  • Qiuwei Huang, Chenhao Lou, Leiyang Lv, Zhiping Li
    Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-024-0095-4

    Herein, we present a photoinduced, CeCl3-catalyzed three-component decarboxylative reaction that couples carboxylic acids, alkenes and tert-butyl hydroperoxide for the formation of various organic peroxides. The ligand-to-metal charge transfer (LMCT) excitation mode allows the decarboxylative alkylation-peroxidation reaction to occur under mild conditions, and is well applicable to primary, secondary and tertiary carboxylic acids and styrene derivatives.

  • Yapei Wang
    Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-024-4186-2
  • Houqiang Ji, Yuxin Liu, Guangyu Du, Tianyu Huang, Ying Zhu, Yangyang Sun, Huan Pang
    Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-024-4179-1

    Metal-organic frameworks (MOFs) are crystalline porous architectures formed by the coordination of organic ligands with metal ions or clusters. MOFs are notable for their vast surface area, abundant active sites, high porosity, and tunable properties. However, their application in energy storage and catalysis is impeded by limited conductivity and chemical stability. A promising approach to mitigating these constraints is the integration of MOFs with other functional or conductive materials. MXenes, with their distinctive layered structure, exceptional electrical conductivity, and rich surface functional groups, provide numerous advantages when combined with MOFs. This review encapsulates the synthesis methodologies of MXene/MOF composites and explores their applications across various domains, including lithium-ion batteries, supercapacitors, lithium-sulfur batteries, zinc-ion batteries, electrocatalysts, and photocatalysts.

  • Chengqiu Li, Chaoyong Zhou, Shilin Mei, Changjiang Yao
    Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-024-4177-3

    The energy density and lifespan of prototype Li-S batteries under high sulfur loading and lean electrolyte have been mainly restricted by the incomplete interconversion between insulating S8 and Li2S. The introduction of an electrocatalyst has been preserved as an effective way to breakthrough the bottleneck of the interconversion rate. Herein, we demonstrate a novel bidirectional redox mediator, insoluble dithiobisphthalimide (DTPI), as the electrocatalyst for both S8 reduction and Li2S oxidation. Due to the dual-functional role of both electron/Li+ donor and acceptor, DTPI can efficiently accelerate the redox reactions during charge/discharge and significantly alleviate the incomplete conversion of sulfur species. Consequently, the Li-S batteries with DTPI deliver superior specific capacity and cycling stability in comparison with those without DTPI. Especially, the redox mediator is scalable for synthesis and the DTPI-based 5 A·h pouch cell delivers a specific discharge capacity of around 870 mA·h·g−1 at 0.1 C (1 C=1675 mA/g) without capacity fading over 80 cycles. The bidirectional catalysis mechanism has been studied through theoretical calculation and ex-situ characterization of the cathode materials. This work approves the effectiveness of bidirectional organic redox mediator in the construction of practical Li-S batteries.