Visible-light-induced Synthesis of Organic Peroxides via Decarboxylative Couplings of Carboxylic Acids, Alkenes and tert-Butyl Hydroperoxide

Qiuwei Huang, Chenhao Lou, Leiyang Lv, Zhiping Li

Chemical Research in Chinese Universities ›› , Vol. 40 ›› Issue (5) : 863-873.

Chemical Research in Chinese Universities All Journals
Chemical Research in Chinese Universities ›› , Vol. 40 ›› Issue (5) : 863-873. DOI: 10.1007/s40242-024-0095-4
Article

Visible-light-induced Synthesis of Organic Peroxides via Decarboxylative Couplings of Carboxylic Acids, Alkenes and tert-Butyl Hydroperoxide

Author information +
History +

Abstract

Herein, we present a photoinduced, CeCl3-catalyzed three-component decarboxylative reaction that couples carboxylic acids, alkenes and tert-butyl hydroperoxide for the formation of various organic peroxides. The ligand-to-metal charge transfer (LMCT) excitation mode allows the decarboxylative alkylation-peroxidation reaction to occur under mild conditions, and is well applicable to primary, secondary and tertiary carboxylic acids and styrene derivatives.

Cite this article

Download citation ▾
Qiuwei Huang, Chenhao Lou, Leiyang Lv, Zhiping Li. Visible-light-induced Synthesis of Organic Peroxides via Decarboxylative Couplings of Carboxylic Acids, Alkenes and tert-Butyl Hydroperoxide. Chemical Research in Chinese Universities, , 40(5): 863‒873 https://doi.org/10.1007/s40242-024-0095-4
This is a preview of subscription content, contact us for subscripton.

References

[1]
Dömling A, Wang W, Wang K Chem. Rev., 2012, 112: 3083.
CrossRef Google scholar
[2]
Jiang H, Studer A Chem. Soc. Rev., 2020, 49: 1790.
CrossRef Google scholar
[3]
Li Z-L, Fang G-C, Gu Q-S, Liu X-Y Chem. Soc. Rev., 2020, 49: 32.
CrossRef Google scholar
[4]
Staveness D, Bosque I, Stephenson C R J Acc. Chem. Res., 2016, 49: 2295.
CrossRef Google scholar
[5]
Romero N A, Nicewicz D A Chem. Rev., 2016, 116: 10075.
CrossRef Google scholar
[6]
Strieth-Kalthoff F, James M J, Teders M, Pitzer L Chem. Soc. Rev., 2018, 47: 7190.
CrossRef Google scholar
[7]
Wang P-Z, Xiao W-J, Chen J-R Nat. Rev. Chem., 2023, 7: 35.
CrossRef Google scholar
[8]
Abderrazak Y, Bhattacharyya A, Reiser O Angew. Chem. Int. Ed., 2021, 60: 21100.
CrossRef Google scholar
[9]
Li H-C, Li G-N, Wang HS, Tan Y, Chen X-L, Yu B Org. Chem. Front., 2024, 11: 135.
CrossRef Google scholar
[10]
Wang Y-M, Wang J-B, Huang J, Cui Z-S, Zhang M, Zhang Z-H J. Catal., 2023, 427: 115100.
CrossRef Google scholar
[11]
Liu Q-H, Kang S-L, Cui Z-S, Liu Y-H, Zhang M, Zhang Z-H Green Chem., 2024, 26: 4803.
CrossRef Google scholar
[12]
Huang J, Liu Y, Tian X, Ni S-F, Li S, Zhang Z-H, Li D, Liu S Green Chem., 2024, 26: 6559.
CrossRef Google scholar
[13]
Lu Y-C, West J G Angew. Chem. Int. Ed., 2023, 62: e202213055.
CrossRef Google scholar
[14]
Hu J, Zhu Z, Xie Z, Le Z Chin. J. Org. Chem., 2022, 42: 978.
CrossRef Google scholar
[15]
Schwarz J, König B Green Chem., 2018, 20: 323.
CrossRef Google scholar
[16]
Gavelle S, Innocent M, Aubineau T, Guérinot A Adv. Synth. Catal., 2022, 364: 4189.
CrossRef Google scholar
[17]
Li L., Yao Y., Fu N., Eur. J. Org. Chem., 2023, e202300166.
[18]
Huang H, Jia K, Chen Y ACS Catal., 2016, 6: 4983.
CrossRef Google scholar
[19]
Griffin J D, Zeller M A, Nicewicz D A J. Am. Chem. Soc., 2015, 137: 11340.
CrossRef Google scholar
[20]
Patra T, Mukherjee S, Ma J Angew. Chem. Int. Ed., 2019, 58: 10514.
CrossRef Google scholar
[21]
Huang Z, Zhao Z, Zhang C, Lu J, Liu H, Luo N, Zhang J, Wang F Nat. Catal., 2020, 3: 170.
CrossRef Google scholar
[22]
Sun Y-L, Tan F-F, Hu R-G, Hu C-H, Li Y Chin. J. Chem., 2022, 40: 1903.
CrossRef Google scholar
[23]
Xu P, López-Rojas P, Ritter T J. Am. Chem. Soc., 2021, 143: 5349.
CrossRef Google scholar
[24]
Chen T Q, Pedersen P S, Dow N W, Fayad R, Hauke C E, Rosko M C, Danilov E O, Blakemore D C, Dechert-Schmitt A-M, Knauber T, Castellano F N, MacMillan D W C J. Am. Chem. Soc., 2022, 144: 8296.
CrossRef Google scholar
[25]
Zhang Y, Qian J, Wang M, Huang Y, Hu P Org. Lett., 2022, 24: 5972.
CrossRef Google scholar
[26]
Xu Y, Huang P, Jiang Y, Lv C, Li P, Wang J, Sun B, Jin C Green Chem., 2023, 25: 8741.
CrossRef Google scholar
[27]
Feng Q, Song Q J. Org. Chem., 2014, 79: 1867.
CrossRef Google scholar
[28]
Guan R, Bennett E L, Huang Z, Xiao J Green Chem., 2022, 24: 2946.
CrossRef Google scholar
[29]
Meng X, Xu H, Zheng Y, Luo J, Huang S ACS Sustainable Chem. Eng., 2022, 10: 5067.
CrossRef Google scholar
[30]
Reichle A, Sterzel H, Kreitmeier P, Fayad R, Castellano F N, Rehbein J, Reiser O Chem. Commun., 2022, 58: 4456.
CrossRef Google scholar
[31]
Candish L, Freitag M, Gensch T, Glorius F Chem. Sci., 2017, 8: 3618.
CrossRef Google scholar
[32]
Pitchai M, Ramirez A, Mayder D M, Ulaganathan S, Kumar H, Aulakh D, Gupta A, Mathur A, Kempson J, Meanwell N, Hudson Z M, Oderinde M S ACS Catal., 2023, 13: 647.
CrossRef Google scholar
[33]
Sun X, Ritter T Angew. Chem. Int. Ed., 2021, 60: 10557.
CrossRef Google scholar
[34]
Moon P J, Yin S, Lundgren R J J. Am. Chem. Soc., 2016, 138: 13826.
CrossRef Google scholar
[35]
Zhang X, Feng X, Zhou C, Yu X, Yamamoto Y, Bao M Org. Lett., 2018, 20: 7095.
CrossRef Google scholar
[36]
Edwards J T, Merchant R R, McClymont K S, Knouse K W, Qin T, Malins L R, Vokits B, Shaw S A, Bao D-H, Wei F-L, Zhou T, Eastgate M D, Baran P S Nature, 2017, 545: 213.
CrossRef Google scholar
[37]
Lu J, Yao Y, Li L, Fu N J. Am. Chem. Soc., 2023, 145: 26774.
CrossRef Google scholar
[38]
Mao R, Bera S, Cheseaux A, Hu X Chem. Sci., 2019, 10: 9555.
CrossRef Google scholar
[39]
Zhang M, Xie J, Zhu C Nat. Commun., 2018, 9: 3518.
CrossRef Google scholar
[40]
Zhang L, Chen S, He H, Li W, Zhu C, Xie J Chem. Commun., 2021, 57: 9064.
CrossRef Google scholar
[41]
Meng L, Yang C, Dong J, Wen W, Chen J, Fan B Org. Chem. Front., 2024, 11: 21.
CrossRef Google scholar
[42]
Wang X, Zhu B, Liu Y, Wang Q ACS Catal., 2022, 12: 2522.
CrossRef Google scholar
[43]
Si Y-F, Chen X-L, Fu X-Y, Sun K, Song X, Qu L-B, Yu B ACS Sustainable Chem. Eng., 2020, 8: 10740
[44]
Lu Y-H, Zhang Z-T, Wu H-Y, Zhou M-H, Song H-Y, Ji H-T, Jiang J, Chen J-Y, He W-M Chin. Chem. Lett., 2023, 34: 108036.
CrossRef Google scholar
[45]
Lyu X-L, Huang S-S, Song H-J, Liu Y-X, Wang Q-M Org. Lett., 2019, 21: 5728.
CrossRef Google scholar
[46]
Li H-C, Li G-N, Wang HS, Tan Y, Chen X-L, Yu B Org. Chem. Front., 2024, 11: 135.
CrossRef Google scholar
[47]
Xu P, Su W, Ritter T Chem. Sci., 2022, 13: 13611.
CrossRef Google scholar
[48]
Yan Z, Sun B, Huang P, Zhao H, Ding H, Su W, Jin C Chin. Chem. Lett., 2022, 33: 1997.
CrossRef Google scholar
[49]
Si Y-F, Sun K, Chen X-L, Fu X-Y, Liu Y, Zeng F-L, Shi T, Qu L-B, Yu B Org. Lett., 2020, 22: 6960.
CrossRef Google scholar
[50]
Zhuang K, Haug G C, Wang Y, Yin S, Sun H, Huang S, Trevino R, Shen K, Sun Y, Huang C, Qin B, Liu Y, Cheng M, Larionov O V, Jin S J. Am. Chem. Soc., 2024, 146: 8508.
CrossRef Google scholar
[51]
Miyake Y, Nakajima K, Nishibayashi Y Chem. Commun., 2013, 49: 7854.
CrossRef Google scholar
[52]
Chu L, Ohta C, Zuo Z, MacMillan D W C J. Am. Chem. Soc., 2014, 136: 10886.
CrossRef Google scholar
[53]
Bao Q-F, Li M, Xia Y, Wang Y-Z, Zhou Z-Z, Liang Y-M Org. Lett., 2021, 23: 1107.
CrossRef Google scholar
[54]
Wang A, Yin Y-Y, Rukhsana, Wang L-Q, Jin J-H, Shen Y-M J. Org. Chem., 2023, 88: 13871.
CrossRef Google scholar
[55]
Venditto N J, Boerth J A Org. Lett., 2023, 25: 3429.
CrossRef Google scholar
[56]
Yaremenko I A, Vil’ V A, Demchuk D V, Terent’ev A O Beilstein J. Org. Chem., 2016, 12: 1647.
CrossRef Google scholar
[57]
Cheng J-K, Loh T-P J. Am. Chem. Soc., 2015, 137: 42.
CrossRef Google scholar
[58]
Schweitzer-Chaput B, Demaerel J, Engler H, Klussmann M Angew. Chem. Int. Ed., 2014, 53: 8737.
CrossRef Google scholar
[59]
Liu W, Li Y, Liu K, Li Z J. Am. Chem. Soc., 2011, 133: 10756.
CrossRef Google scholar
[60]
Lv L, Shen B, Li Z Angew. Chem. Int. Ed., 2014, 53: 4164.
CrossRef Google scholar
[61]
Lou C, Feng Y, Huang Q, Lv L, Li Z Asian J. Org. Chem., 2023, 12: e202300408.
CrossRef Google scholar
[62]
Feng Y, Chen S, Lv L, Yaremenko I A, Terent’ev A O, Li Z Org. Lett., 2024, 26: 1920.
CrossRef Google scholar
[63]
An Q, Xing Y-Y, Pu R, Jia M, Chen Y, Hu A, Zhang S-Q, Yu N, Du J, Zhang Y, Chen J, Liu W, Hong X, Zuo Z J. Am. Chem. Soc., 2023, 145: 359.
CrossRef Google scholar
[64]
Chen Y, Wang X, He X, An Q, Zuo Z J. Am. Chem. Soc., 2021, 143: 4896.
CrossRef Google scholar
[65]
Du J, Yang X, Wang X, An Q, He X, Pan H, Zuo Z Angew. Chem. Int. Ed., 2021, 60: 5370.
CrossRef Google scholar
[66]
Yang Z, Yang D, Zhang J, Tan C, Li J, Wang S, Zhang H, Huang Z, Lei A J. Am. Chem. Soc., 2022, 144: 13895.
CrossRef Google scholar
[67]
Shirase S, Tamaki S, Shinohara K, Hirosawa K, Tsurugi H, Satoh T, Mashima K J. Am. Chem. Soc., 2020, 142: 5668.
CrossRef Google scholar
[68]
Lai X-L, Chen M, Wang Y, Song J, Xu H-C J. Am. Chem. Soc., 2022, 144: 20201.
CrossRef Google scholar
[69]
Wang Y, Li L, Fu N ACS Catal., 2022, 12: 10661.
CrossRef Google scholar
[70]
Li H-C, Li G-N, Sun K, Chen X-L, Jiang M-X, Qu L-B, Yu B Org. Lett., 2022, 24: 2431.
CrossRef Google scholar
[71]
Dagar N, Singh S, Roy S R J. Org. Chem., 2022, 87: 8970.
CrossRef Google scholar
[72]
Singh S, Dagar N, Roy S R Chem. Commun., 2022, 58: 3831.
CrossRef Google scholar
[73]
Yatham V R, Bellotti P, König B Chem. Commun., 2019, 55: 3489.
CrossRef Google scholar
[74]
Paquette L A In Encyclopedia of Reagents for Organic Synthesis, 1995 New York John Wiley & Sons, Inc
[75]
Wu C-S, Li R, Wang Q-Q, Yang L Green Chem., 2019, 21: 269.
CrossRef Google scholar

39

Accesses

0

Citations

Detail

Sections
Recommended

/