Visible-light-induced Synthesis of Organic Peroxides via Decarboxylative Couplings of Carboxylic Acids, Alkenes and tert-Butyl Hydroperoxide

Qiuwei Huang , Chenhao Lou , Leiyang Lv , Zhiping Li

Chemical Research in Chinese Universities ›› : 1 -11.

PDF
Chemical Research in Chinese Universities ›› : 1 -11. DOI: 10.1007/s40242-024-0095-4
Article

Visible-light-induced Synthesis of Organic Peroxides via Decarboxylative Couplings of Carboxylic Acids, Alkenes and tert-Butyl Hydroperoxide

Author information +
History +
PDF

Abstract

Herein, we present a photoinduced, CeCl3-catalyzed three-component decarboxylative reaction that couples carboxylic acids, alkenes and tert-butyl hydroperoxide for the formation of various organic peroxides. The ligand-to-metal charge transfer (LMCT) excitation mode allows the decarboxylative alkylation-peroxidation reaction to occur under mild conditions, and is well applicable to primary, secondary and tertiary carboxylic acids and styrene derivatives.

Keywords

Visible-light catalysis / Difunctionalization / Carboxylic acid / Alkene / Organic peroxide

Cite this article

Download citation ▾
Qiuwei Huang, Chenhao Lou, Leiyang Lv, Zhiping Li. Visible-light-induced Synthesis of Organic Peroxides via Decarboxylative Couplings of Carboxylic Acids, Alkenes and tert-Butyl Hydroperoxide. Chemical Research in Chinese Universities 1-11 DOI:10.1007/s40242-024-0095-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dömling A, Wang W, Wang K. Chem. Rev., 2012, 112: 3083.

[2]

Jiang H, Studer A. Chem. Soc. Rev., 2020, 49: 1790.

[3]

Li Z-L, Fang G-C, Gu Q-S, Liu X-Y. Chem. Soc. Rev., 2020, 49: 32.

[4]

Staveness D, Bosque I, Stephenson C R J. Acc. Chem. Res., 2016, 49: 2295.

[5]

Romero N A, Nicewicz D A. Chem. Rev., 201, 116: 10075.

[6]

Strieth-Kalthoff F, James M J, Teders M, Pitzer L. Chem. Soc. Rev., 2018, 47: 7190.

[7]

Wang P-Z, Xiao W-J, Chen J-R. Nat. Rev. Chem., 2023, 7: 35.

[8]

Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed., 2021, 60: 21100.

[9]

Li H-C, Li G-N, Wang HS, Tan Y, Chen X-L, Yu B. Org. Chem. Front., 2024, 11: 135.

[10]

Wang Y-M, Wang J-B, Huang J, Cui Z-S, Zhang M, Zhang Z-H. J. Catal., 2023, 427: 115100.

[11]

Liu Q-H, Kang S-L, Cui Z-S, Liu Y-H, Zhang M, Zhang Z-H. Green Chem., 2024, 26: 4803.

[12]

Huang J, Liu Y, Tian X, Ni S-F, Li S, Zhang Z-H, Li D, Liu S. Green Chem., 2024, 26: 6559.

[13]

Lu Y-C, West J G. Angew. Chem. Int. Ed., 2023, 62: e202213055.

[14]

Hu J, Zhu Z, Xie Z, Le Z. Chin. J. Org. Chem., 2022, 42: 978.

[15]

Schwarz J, König B. Green Chem., 2018, 20: 323.

[16]

Gavelle S, Innocent M, Aubineau T, Guérinot A. Adv. Synth. Catal., 2022, 364: 4189.

[17]

Li L., Yao Y., Fu N., Eur. J. Org. Chem., 2023, e202300166.

[18]

Huang H, Jia K, Chen Y. ACS Catal., 201, 6: 4983.

[19]

Griffin J D, Zeller M A, Nicewicz D A. J. Am. Chem. Soc., 2015, 137: 11340.

[20]

Patra T, Mukherjee S, Ma J. Angew. Chem. Int. Ed., 2019, 58: 10514.

[21]

Huang Z, Zhao Z, Zhang C, Lu J, Liu H, Luo N, Zhang J, Wang F. Nat. Catal., 2020, 3: 170.

[22]

Sun Y-L, Tan F-F, Hu R-G, Hu C-H, Li Y. Chin. J. Chem., 2022, 40: 1903.

[23]

Xu P, López-Rojas P, Ritter T. J. Am. Chem. Soc., 2021, 143: 5349.

[24]

Chen T Q, Pedersen P S, Dow N W, Fayad R, Hauke C E, Rosko M C, Danilov E O, Blakemore D C, Dechert-Schmitt A-M, Knauber T, Castellano F N, MacMillan D W C. J. Am. Chem. Soc., 2022, 144: 8296.

[25]

Zhang Y, Qian J, Wang M, Huang Y, Hu P. Org. Lett., 2022, 24: 5972.

[26]

Xu Y, Huang P, Jiang Y, Lv C, Li P, Wang J, Sun B, Jin C. Green Chem., 2023, 25: 8741.

[27]

Feng Q, Song Q. J. Org. Chem., 2014, 79: 1867.

[28]

Guan R, Bennett E L, Huang Z, Xiao J. Green Chem., 2022, 24: 2946.

[29]

Meng X, Xu H, Zheng Y, Luo J, Huang S. ACS Sustainable Chem. Eng., 2022, 10: 5067.

[30]

Reichle A, Sterzel H, Kreitmeier P, Fayad R, Castellano F N, Rehbein J, Reiser O. Chem. Commun., 2022, 58: 4456.

[31]

Candish L, Freitag M, Gensch T, Glorius F. Chem. Sci., 2017, 8: 3618.

[32]

Pitchai M, Ramirez A, Mayder D M, Ulaganathan S, Kumar H, Aulakh D, Gupta A, Mathur A, Kempson J, Meanwell N, Hudson Z M, Oderinde M S. ACS Catal., 2023, 13: 647.

[33]

Sun X, Ritter T. Angew. Chem. Int. Ed., 2021, 60: 10557.

[34]

Moon P J, Yin S, Lundgren R J. J. Am. Chem. Soc., 201, 138: 13826.

[35]

Zhang X, Feng X, Zhou C, Yu X, Yamamoto Y, Bao M. Org. Lett., 2018, 20: 7095.

[36]

Edwards J T, Merchant R R, McClymont K S, Knouse K W, Qin T, Malins L R, Vokits B, Shaw S A, Bao D-H, Wei F-L, Zhou T, Eastgate M D, Baran P S. Nature, 2017, 545: 213.

[37]

Lu J, Yao Y, Li L, Fu N. J. Am. Chem. Soc., 2023, 145: 26774.

[38]

Mao R, Bera S, Cheseaux A, Hu X. Chem. Sci., 2019, 10: 9555.

[39]

Zhang M, Xie J, Zhu C. Nat. Commun., 2018, 9: 3518.

[40]

Zhang L, Chen S, He H, Li W, Zhu C, Xie J. Chem. Commun., 2021, 57: 9064.

[41]

Meng L, Yang C, Dong J, Wen W, Chen J, Fan B. Org. Chem. Front., 2024, 11: 21.

[42]

Wang X, Zhu B, Liu Y, Wang Q. ACS Catal., 2022, 12: 2522.

[43]

Si Y-F, Chen X-L, Fu X-Y, Sun K, Song X, Qu L-B, Yu B. ACS Sustainable Chem. Eng., 2020, 8: 10740.

[44]

Lu Y-H, Zhang Z-T, Wu H-Y, Zhou M-H, Song H-Y, Ji H-T, Jiang J, Chen J-Y, He W-M. Chin. Chem. Lett., 2023, 34: 108036.

[45]

Lyu X-L, Huang S-S, Song H-J, Liu Y-X, Wang Q-M. Org. Lett., 2019, 21: 5728.

[46]

Li H-C, Li G-N, Wang HS, Tan Y, Chen X-L, Yu B. Org. Chem. Front., 2024, 11: 135.

[47]

Xu P, Su W, Ritter T. Chem. Sci., 2022, 13: 13611.

[48]

Yan Z, Sun B, Huang P, Zhao H, Ding H, Su W, Jin C. Chin. Chem. Lett., 2022, 33: 1997.

[49]

Si Y-F, Sun K, Chen X-L, Fu X-Y, Liu Y, Zeng F-L, Shi T, Qu L-B, Yu B. Org. Lett., 2020, 22: 6960.

[50]

Zhuang K, Haug G C, Wang Y, Yin S, Sun H, Huang S, Trevino R, Shen K, Sun Y, Huang C, Qin B, Liu Y, Cheng M, Larionov O V, Jin S. J. Am. Chem. Soc., 2024, 146: 8508.

[51]

Miyake Y, Nakajima K, Nishibayashi Y. Chem. Commun., 2013, 49: 7854.

[52]

Chu L, Ohta C, Zuo Z, MacMillan D W C. J. Am. Chem. Soc., 2014, 136: 10886.

[53]

Bao Q-F, Li M, Xia Y, Wang Y-Z, Zhou Z-Z, Liang Y-M. Org. Lett., 2021, 23: 1107.

[54]

Wang A, Yin Y-Y, Rukhsana, Wang L-Q, Jin J-H, Shen Y-M. J. Org. Chem., 2023, 88: 13871.

[55]

Venditto N J, Boerth J A. Org. Lett., 2023, 25: 3429.

[56]

Yaremenko I A, Vil’ V A, Demchuk D V, Terent’ev A O. Beilstein J. Org. Chem., 201, 12: 1647.

[57]

Cheng J-K, Loh T-P. J. Am. Chem. Soc., 2015, 137: 42.

[58]

Schweitzer-Chaput B, Demaerel J, Engler H, Klussmann M. Angew. Chem. Int. Ed., 2014, 53: 8737.

[59]

Liu W, Li Y, Liu K, Li Z. J. Am. Chem. Soc., 2011, 133: 10756.

[60]

Lv L, Shen B, Li Z. Angew. Chem. Int. Ed., 2014, 53: 4164.

[61]

Lou C, Feng Y, Huang Q, Lv L, Li Z. Asian J. Org. Chem., 2023, 12: e202300408.

[62]

Feng Y, Chen S, Lv L, Yaremenko I A, Terent’ev A O, Li Z. Org. Lett., 2024, 26: 1920.

[63]

An Q, Xing Y-Y, Pu R, Jia M, Chen Y, Hu A, Zhang S-Q, Yu N, Du J, Zhang Y, Chen J, Liu W, Hong X, Zuo Z. J. Am. Chem. Soc., 2023, 145: 359.

[64]

Chen Y, Wang X, He X, An Q, Zuo Z. J. Am. Chem. Soc., 2021, 143: 4896.

[65]

Du J, Yang X, Wang X, An Q, He X, Pan H, Zuo Z. Angew. Chem. Int. Ed., 2021, 60: 5370.

[66]

Yang Z, Yang D, Zhang J, Tan C, Li J, Wang S, Zhang H, Huang Z, Lei A. J. Am. Chem. Soc., 2022, 144: 13895.

[67]

Shirase S, Tamaki S, Shinohara K, Hirosawa K, Tsurugi H, Satoh T, Mashima K. J. Am. Chem. Soc., 2020, 142: 5668.

[68]

Lai X-L, Chen M, Wang Y, Song J, Xu H-C. J. Am. Chem. Soc., 2022, 144: 20201.

[69]

Wang Y, Li L, Fu N. ACS Catal., 2022, 12: 10661.

[70]

Li H-C, Li G-N, Sun K, Chen X-L, Jiang M-X, Qu L-B, Yu B. Org. Lett., 2022, 24: 2431.

[71]

Dagar N, Singh S, Roy S R. J. Org. Chem., 2022, 87: 8970.

[72]

Singh S, Dagar N, Roy S R. Chem. Commun., 2022, 58: 3831.

[73]

Yatham V R, Bellotti P, König B. Chem. Commun., 2019, 55: 3489.

[74]

Paquette L A. In Encyclopedia of Reagents for Organic Synthesis, 1995, New York: John Wiley & Sons, Inc

[75]

Wu C-S, Li R, Wang Q-Q, Yang L. Green Chem., 2019, 21: 269.

AI Summary AI Mindmap
PDF

205

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/