Co-loading Pd and CeO2 on Silicalite-1 as High-performance Catalyst for Methane Dry Reforming Reaction

Jing Xu, Rui Zhang, Ke Wang, Xiao Wang, Shuyan Song, Hongjie Zhang

Chemical Research in Chinese Universities ›› 2024

Chemical Research in Chinese Universities ›› 2024 DOI: 10.1007/s40242-024-4194-2
Article

Co-loading Pd and CeO2 on Silicalite-1 as High-performance Catalyst for Methane Dry Reforming Reaction

Author information +
History +

Abstract

The methane dry reforming (DRM) reaction can convert CO2 and CH4, both of which contribute to climate change, into syngas, which holds great significance in mitigating specific environmental issues stemming from the greenhouse effect. Nonetheless, the challenges that persist include the substantial energy consumption and the catalyst’s susceptibility to deactivation, both of which necessitate solutions. Herein, we developed a catalyst, PdCe/S1, featuring small-sized Pd species and CeO2 stabilized on pure silicon zeolite (silicalite-1), which is employed in the DRM reaction. It can achieve 97% CH4 conversion and 98% CO2 conversion at 750 °C, surpassing binary Pd/CeO2 and Pd/S1 catalysts. The small size of CeO2 stabilized by silicalite-1 promotes oxygen defects formation and enhances the CO2 adsorption capacity. The introduction of silicalite-1 further enhances the interaction between Pd and CeO2, boosting DRM performance.

Cite this article

Download citation ▾
Jing Xu, Rui Zhang, Ke Wang, Xiao Wang, Shuyan Song, Hongjie Zhang. Co-loading Pd and CeO2 on Silicalite-1 as High-performance Catalyst for Methane Dry Reforming Reaction. Chemical Research in Chinese Universities, 2024 https://doi.org/10.1007/s40242-024-4194-2

References

[[1]]
TianS, YanF, ZhangZ, JiangJ. Sci. Adv., 2019, 5: eaav5077
CrossRef Google scholar
[[2]]
JiG, YaoJ G, CloughP T, da CostaJ C D, AnthonyE J, FennellP S, WangW, ZhaoM. Energ. Environ. Sci., 2018, 11: 2647
CrossRef Google scholar
[[3]]
LiuY, ChenY, GaoZ, ZhangX, ZhangL, WangM, ChenB, DiaoY, LiY, XiaoD, WangX, MaD, ShiC. Appl. Catal. B, 2022, 307: 121202
CrossRef Google scholar
[[4]]
WangR, LiT, GaoR, QinJ, LiM, GuoY, SongY. Chem. Res. Chinese Universities, 2023, 39: 246
CrossRef Google scholar
[[5]]
AlyeaE C, HeD, WangJ. Appl. Catal. A Gen., 1993, 104: 77
CrossRef Google scholar
[[6]]
LiuZ, GrinterD C, LustembergP G, Nguyen-PhanT D, ZhouY, LuoS, WaluyoI, CrumlinE J, StacchiolaD J, ZhouJ, CarrascoJ, BusnengoH F, Ganduglia-PirovanoM V, SenanayakeS D, RodriguezJ A. Angew. Chem. Int. Ed., 2016, 55: 7455
CrossRef Google scholar
[[7]]
ZhangZ, YangZ, LiuL, WangY, KawiS. Adv. Energ. Mater., 2023, 13: 2301852
CrossRef Google scholar
[[8]]
ZhangF, GutiérrezR A, LustembergP G, LiuZ, RuiN, WuT, RamírezP J, XuW, IdrissH, Ganduglia-PirovanoM V, SenanayakeS D, RodriguezJ A. ACS Catal., 2021, 11: 1613
CrossRef Google scholar
[[9]]
PakhareD, SpiveyJ. Chem. Soc. Rev., 2014, 43: 7813
CrossRef Google scholar
[[10]]
XuH, ZhangL, WangH, ZhangS, LiW, WangX, SongS, WangD, ShiZ. Chem. Res. Chinese Universities, 2023, 39: 948
CrossRef Google scholar
[[11]]
FoppaL, MargossianT, KimS M, MüllerC, CopéretC, LarmierK, Comas-VivesA. J. Am. Chem. Soc., 2017, 139: 17128
CrossRef Google scholar
[[12]]
BitterJ H, SeshanK, LercherJ A. J. Catal., 1998, 176: 93
CrossRef Google scholar
[[13]]
YanX, HuT, LiuP, LiS, ZhaoB, ZhangQ, JiaoW, ChenS, WangP, LuJ, FanL, DengX, PanY X. Appl. Catal. B, 2019, 246: 221
CrossRef Google scholar
[[14]]
WangK, ZhangR, WangH, ZhangL, WangZ, WangX, SongS, ZhangH. Chem. Res. Chinese Universities, 2024, 40: 970
CrossRef Google scholar
[[15]]
WuX, WangX, ZhangL, WangX, SongS, ZhangH. Angew. Chem. Int. Ed., 2024, 63: e202317594
CrossRef Google scholar
[[16]]
LinS, LiZ, LiM. Fuel, 2023, 333: 126369
CrossRef Google scholar
[[17]]
LiX, Pereira-HernándezX I, ChenY, XuJ, ZhaoJ, PaoC-W, FangC Y, ZengJ, WangY, GatesB C, LiuJ. Nature, 2022, 611: 284
CrossRef Google scholar
[[18]]
ChenJ, ZhangY, ZhangZ, HouD, BaiF, HanY, ZhangC, ZhangY, HuJ. J. Mater. Chem. A, 2023, 11: 8540
CrossRef Google scholar
[[19]]
BruixA, RodriguezJ A, RamírezP J, SenanayakeS D, EvansJ, ParkJ B, StacchiolaD, LiuP, HrbekJ, IllasF. J. Am. Chem. Soc., 2012, 134: 8968
CrossRef Google scholar
[[20]]
JinH, XuD, TianC, YueY, HuaW, GaoZ. Chem. Res. Chinese Universities, 2022, 38: 1547
CrossRef Google scholar
[[21]]
HaH, YoonS, AnK, KimH Y. ACS Catal., 2018, 8: 11491
CrossRef Google scholar
[[22]]
SunQ, WangN, FanQ, ZengL, MayoralA, MiaoS, YangR, JiangZ, ZhouW, ZhangJ, ZhangT, XuJ, ZhangP, ChengJ, YangD C, JiaR, LiL, ZhangQ, WangY, TerasakiO, YuJ. Angew. Chem. Int. Ed., 2020, 59: 19450
CrossRef Google scholar
[[23]]
WangN, SunQ, BaiR, LiX, GuoG, YuJ. J. Am. Chem. Soc., 2016, 138: 7484
CrossRef Google scholar
[[24]]
WangC, JieX, QiuY, ZhaoY, Al-MegrenH A, AlshihriS, EdwardsP P, XiaoT. Appl. Catal. B, 2019, 259: 118019
CrossRef Google scholar
[[25]]
WangN, QianW, ChuW, WeiF. Catal. Sci. Technol., 2016, 6: 3594
CrossRef Google scholar
[[26]]
YangW, Polo-GarzonF, ZhouH, HuangZ, ChiM, MeyerH, YuX, LiY, WuZ. Angew. Chem. Int. Ed., 2023, 62: e202217323
CrossRef Google scholar
[[27]]
GuoM, MengQ, ChenW, MengZ, GaoM-L, LiQ, DuanX, JiangH L. Angew. Chem. Int. Ed., 2023, 62: e202305212
CrossRef Google scholar
[[28]]
LiS, XuY, ChenY, LiW, LinL, LiM, DengY, WangX, GeB, YangC, YaoS, XieJ, LiY, LiuX, MaD. Angew. Chem. Int. Ed., 2017, 56: 10761
CrossRef Google scholar
[[29]]
LiL, XuJ, LiangX, WuX, WangX, SongS, ZhangH. Chem. Res. Chinese Universities, 2023, 39: 921
CrossRef Google scholar
[[30]]
WangG, MuX, TanR, PanZ, LiJ, ZhanQ, FuR, SongS, LiL. ACS Catal., 2023, 13: 11666
CrossRef Google scholar
[[31]]
ParastaevA, MuravevV, Huertas OstaE, van HoofA J F, KimpelT F, KosinovN, HensenE J M. Nat. Catal., 2020, 3: 526
CrossRef Google scholar
[[32]]
ChangK, WangT, ChenJ G. Appl. Catal. B, 2017, 206: 704
CrossRef Google scholar
[[33]]
ZhuQ, ZhouH, WangL, WangL, WangC, WangH, FangW, HeM, WuQ, XiaoF S. Nat. Catal., 2022, 5: 1030
CrossRef Google scholar
[[34]]
QianL, CaiW, ZhangL, YeL, LiJ, TangM, YueB, HeH. Appl. Catal. B, 2015, 164: 168
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/