Co-loading Pd and CeO2 on Silicalite-1 as High-performance Catalyst for Methane Dry Reforming Reaction

Jing Xu , Rui Zhang , Ke Wang , Xiao Wang , Shuyan Song , Hongjie Zhang

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 15 -20.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 15 -20. DOI: 10.1007/s40242-024-4194-2
Article

Co-loading Pd and CeO2 on Silicalite-1 as High-performance Catalyst for Methane Dry Reforming Reaction

Author information +
History +
PDF

Abstract

The methane dry reforming (DRM) reaction can convert CO2 and CH4, both of which contribute to climate change, into syngas, which holds great significance in mitigating specific environmental issues stemming from the greenhouse effect. Nonetheless, the challenges that persist include the substantial energy consumption and the catalyst’s susceptibility to deactivation, both of which necessitate solutions. Herein, we developed a catalyst, PdCe/S1, featuring small-sized Pd species and CeO2 stabilized on pure silicon zeolite (silicalite-1), which is employed in the DRM reaction. It can achieve 97% CH4 conversion and 98% CO2 conversion at 750 °C, surpassing binary Pd/CeO2 and Pd/S1 catalysts. The small size of CeO2 stabilized by silicalite-1 promotes oxygen defects formation and enhances the CO2 adsorption capacity. The introduction of silicalite-1 further enhances the interaction between Pd and CeO2, boosting DRM performance.

Keywords

Dry reforming of methane / CeO2 / Zeolite

Cite this article

Download citation ▾
Jing Xu, Rui Zhang, Ke Wang, Xiao Wang, Shuyan Song, Hongjie Zhang. Co-loading Pd and CeO2 on Silicalite-1 as High-performance Catalyst for Methane Dry Reforming Reaction. Chemical Research in Chinese Universities, 2024, 41(1): 15-20 DOI:10.1007/s40242-024-4194-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TianS, YanF, ZhangZ, JiangJ Sci. Adv., 2019, 5: eaav5077

[2]

JiG, YaoJ G, CloughP T, da CostaJ C D, AnthonyE J, FennellP S, WangW, ZhaoM Energ. Environ. Sci., 2018, 11: 2647

[3]

LiuY, ChenY, GaoZ, ZhangX, ZhangL, WangM, ChenB, DiaoY, LiY, XiaoD, WangX, MaD, ShiC Appl. Catal. B, 2022, 307: 121202

[4]

WangR, LiT, GaoR, QinJ, LiM, GuoY, SongY Chem. Res. Chinese Universities, 2023, 39: 246

[5]

AlyeaE C, HeD, WangJ Appl. Catal. A Gen., 1993, 104: 77

[6]

LiuZ, GrinterD C, LustembergP G, Nguyen-PhanT D, ZhouY, LuoS, WaluyoI, CrumlinE J, StacchiolaD J, ZhouJ, CarrascoJ, BusnengoH F, Ganduglia-PirovanoM V, SenanayakeS D, RodriguezJ A Angew. Chem. Int. Ed., 2016, 55: 7455

[7]

ZhangZ, YangZ, LiuL, WangY, KawiS Adv. Energ. Mater., 2023, 13: 2301852

[8]

ZhangF, GutiérrezR A, LustembergP G, LiuZ, RuiN, WuT, RamírezP J, XuW, IdrissH, Ganduglia-PirovanoM V, SenanayakeS D, RodriguezJ A ACS Catal., 2021, 11: 1613

[9]

PakhareD, SpiveyJ Chem. Soc. Rev., 2014, 43: 7813

[10]

XuH, ZhangL, WangH, ZhangS, LiW, WangX, SongS, WangD, ShiZ Chem. Res. Chinese Universities, 2023, 39: 948

[11]

FoppaL, MargossianT, KimS M, MüllerC, CopéretC, LarmierK, Comas-VivesA J. Am. Chem. Soc., 2017, 139: 17128

[12]

BitterJ H, SeshanK, LercherJ A J. Catal., 1998, 176: 93

[13]

YanX, HuT, LiuP, LiS, ZhaoB, ZhangQ, JiaoW, ChenS, WangP, LuJ, FanL, DengX, PanY X Appl. Catal. B, 2019, 246: 221

[14]

WangK, ZhangR, WangH, ZhangL, WangZ, WangX, SongS, ZhangH Chem. Res. Chinese Universities, 2024, 40: 970

[15]

WuX, WangX, ZhangL, WangX, SongS, ZhangH Angew. Chem. Int. Ed., 2024, 63: e202317594

[16]

LinS, LiZ, LiM Fuel, 2023, 333: 126369

[17]

LiX, Pereira-HernándezX I, ChenY, XuJ, ZhaoJ, PaoC-W, FangC Y, ZengJ, WangY, GatesB C, LiuJ Nature, 2022, 611: 284

[18]

ChenJ, ZhangY, ZhangZ, HouD, BaiF, HanY, ZhangC, ZhangY, HuJ J. Mater. Chem. A, 2023, 11: 8540

[19]

BruixA, RodriguezJ A, RamírezP J, SenanayakeS D, EvansJ, ParkJ B, StacchiolaD, LiuP, HrbekJ, IllasF J. Am. Chem. Soc., 2012, 134: 8968

[20]

JinH, XuD, TianC, YueY, HuaW, GaoZ Chem. Res. Chinese Universities, 2022, 38: 1547

[21]

HaH, YoonS, AnK, KimH Y ACS Catal., 2018, 8: 11491

[22]

SunQ, WangN, FanQ, ZengL, MayoralA, MiaoS, YangR, JiangZ, ZhouW, ZhangJ, ZhangT, XuJ, ZhangP, ChengJ, YangD C, JiaR, LiL, ZhangQ, WangY, TerasakiO, YuJ Angew. Chem. Int. Ed., 2020, 59: 19450

[23]

WangN, SunQ, BaiR, LiX, GuoG, YuJ J. Am. Chem. Soc., 2016, 138: 7484

[24]

WangC, JieX, QiuY, ZhaoY, Al-MegrenH A, AlshihriS, EdwardsP P, XiaoT Appl. Catal. B, 2019, 259: 118019

[25]

WangN, QianW, ChuW, WeiF Catal. Sci. Technol., 2016, 6: 3594

[26]

YangW, Polo-GarzonF, ZhouH, HuangZ, ChiM, MeyerH, YuX, LiY, WuZ Angew. Chem. Int. Ed., 2023, 62: e202217323

[27]

GuoM, MengQ, ChenW, MengZ, GaoM-L, LiQ, DuanX, JiangH L Angew. Chem. Int. Ed., 2023, 62: e202305212

[28]

LiS, XuY, ChenY, LiW, LinL, LiM, DengY, WangX, GeB, YangC, YaoS, XieJ, LiY, LiuX, MaD Angew. Chem. Int. Ed., 2017, 56: 10761

[29]

LiL, XuJ, LiangX, WuX, WangX, SongS, ZhangH Chem. Res. Chinese Universities, 2023, 39: 921

[30]

WangG, MuX, TanR, PanZ, LiJ, ZhanQ, FuR, SongS, LiL ACS Catal., 2023, 13: 11666

[31]

ParastaevA, MuravevV, Huertas OstaE, van HoofA J F, KimpelT F, KosinovN, HensenE J M Nat. Catal., 2020, 3: 526

[32]

ChangK, WangT, ChenJ G Appl. Catal. B, 2017, 206: 704

[33]

ZhuQ, ZhouH, WangL, WangL, WangC, WangH, FangW, HeM, WuQ, XiaoF S Nat. Catal., 2022, 5: 1030

[34]

QianL, CaiW, ZhangL, YeL, LiJ, TangM, YueB, HeH Appl. Catal. B, 2015, 164: 168

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/