High Efficiency Mixed Amine Adsorbents for Directly Capturing Carbon Dioxide from Air

Yilu Wu, Haolong Zheng, Zihan Xia, Chengmin Fu, Feng Xu, Jian Yan

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 138-145.

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 138-145. DOI: 10.1007/s40242-024-4206-2
Article

High Efficiency Mixed Amine Adsorbents for Directly Capturing Carbon Dioxide from Air

Author information +
History +

Abstract

The development of effective adsorbents with high amine efficiency and CO2 adsorption almost unaffected by humidity is extremely challenging. In this study, we introduce an innovative solid amine adsorbent, TETA/DEA@FS, composed of triethylenetetramine (TETA) and diethanolamine (DEA) functionalized fumed silica (FS), which exhibits exceptional capability in selectively capturing trace CO2 from N2. TETA/DEA@FS shows an exceptionally high capacity of CO2 adsorption of 1.13 mmol/g at the temperature of 298 K and the pressure of 0.0004 bar (1 bar=100 kPa), and achieves an unprecedented CO2/N2 IAST selectivity of 1.70×1012. TETA/DEA@FS exhibits high amine efficiency, with breakthrough experiments demonstrating that CO2 adsorption remains nearly unaffected by humidity. Meanwhile, TETA/DEA@FS demonstrates rapid CO2 adsorption kinetics and outstanding cyclic stability.

Cite this article

Download citation ▾
Yilu Wu, Haolong Zheng, Zihan Xia, Chengmin Fu, Feng Xu, Jian Yan. High Efficiency Mixed Amine Adsorbents for Directly Capturing Carbon Dioxide from Air. Chemical Research in Chinese Universities, 2024, 41(1): 138‒145 https://doi.org/10.1007/s40242-024-4206-2

References

[[1]]
Alivand M S, McQuillan R V, Momeni A, Zavabeti A, Stevens G W, Mumford K A Small, 2023, 19: 2300150.
CrossRef Google scholar
[[2]]
Kumar R, Bandyopadhyay M, Pandey M, Tsunoji N Microporous Mesoporous Mater., 2022, 338: 111956.
CrossRef Google scholar
[[3]]
Shi X, Xiao H, Azarabadi H, Song J, Wu X, Chen X, Lackner K S Angew. Chem. Int. Ed., 2020, 59: 6984.
CrossRef Google scholar
[[4]]
Song M, Rim G, Kong F, Priyadarshini P, Rosu C, Lively R P, Jones C W Ind. Eng. Chem. Res., 2022, 61: 13624.
CrossRef Google scholar
[[5]]
Wang X, Zhao Z, Zahra K, Li J, Zhang Z Chem. Res. Chinese Universities, 2023, 39: 580.
CrossRef Google scholar
[[6]]
Wang H, Yang Z, Zhou Y, Cui H, Cheng Z, Zhou Z Ind. Eng. Chem. Res., 2023, 62: 16579.
CrossRef Google scholar
[[7]]
Pangapanga, Phiri I, Mungatana E D Int. J. Disaster Risk Reduct., 2021, 61: 102322.
CrossRef Google scholar
[[8]]
Kumar A, Madden D G, Lusi M, Chen K J, Daniels E A, Curtin T, Perry J J IV, Zaworotko M J Angew. Chem. Int. Ed., 2015, 54: 14372.
CrossRef Google scholar
[[9]]
Erans M, Sanz Pérez E S, Hanak D P, Clulow Z, Reiner D M, Mutch G A Energy Environ. Sci., 2022, 15: 1360.
CrossRef Google scholar
[[10]]
Tsiotsias A I, Charisiou N D, Italiano C, Ferrante G D, Pino L, Vita A, Sebastian V, Hinder S J, Baker M A, Sharan A, Singh N Appl. Surf. Sci., 2024, 646: 158945.
CrossRef Google scholar
[[11]]
Balasubramaniam B M, Thierry P T, Lethier S, Pugnet V, Llewellyn P, Rajendran A Chem. Eng. J., 2024, 485: 149568.
CrossRef Google scholar
[[12]]
Jia X, Sun P, Liu A, Chen J, Wang J, Zhang H, Zhu W Chem. Res. Chinese Universities, 2023, 39: 680.
CrossRef Google scholar
[[13]]
Raganati F, Miccio F, Ammendola P Energy Fuels, 2021, 35: 12845.
CrossRef Google scholar
[[14]]
Chen Y, Lv D, Wu J, Xiao J, Xi H, Xia Q, Li Z Chem. Eng. J., 2017, 308: 1065.
CrossRef Google scholar
[[15]]
Xian S, Peng J, Zhang Z, Xia Q, Wang H, Li Z Chem. Eng. J., 2015, 270: 385.
CrossRef Google scholar
[[16]]
Fu D, Park Y, Davis M E PNAS, 2022, 119: e2211544119.
CrossRef Google scholar
[[17]]
Tao Z, Tian Y, Ou S Y, Gu Q, Shang J AlChE J., 2023, 69: e18139.
CrossRef Google scholar
[[18]]
McDonald T M, Lee W R, Mason J A, Wiers B M, Hong C S, Long J R J. Am. Chem. Soc., 2012, 134: 7056.
CrossRef Google scholar
[[19]]
Goeppert A, Czaun M, May R B, Prakash G K S, Olah G A, Narayanan S R J. Am. Chem. Soc., 2011, 133: 20164.
CrossRef Google scholar
[[20]]
Lv D, Chen J, Yang K, Wu H, Chen Y, Duan C, Wu Y, Xiao J, Xi H, Li Z, Xia Q Chem. Eng. J., 2019, 375: 122074.
CrossRef Google scholar
[[21]]
Yang J, Zhao Q, Xu H, Li L, Dong J, Li J J. Chem. Eng. Data, 2012, 57: 3701.
CrossRef Google scholar
[[22]]
Wu L, Sun J, Zhu W, Wang C, Zhang L, Niu R, Hou R, Pan Y Ind. Eng. Chem. Res., 2024, 63: 7760.
CrossRef Google scholar
[[23]]
Nugent P, Belmabkhout Y, Burd S D, Cairns A J, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M Nature, 2013, 495: 80.
CrossRef Google scholar
[[24]]
Wang Q, Chen Y, Liu P, Wang Y, Yang J, Li J, Li L Molecules, 2022, 27: 5608.
CrossRef Google scholar
[[25]]
Li Z, Zhi Y, Feng X, Ding X, Zou Y, Liu X, Mu Y Chemistry-A European Journal, 2015, 21: 12079.
CrossRef Google scholar
[[26]]
Wu Y, Lv Z, Zhou X, Peng J, Tang Y, Li Z Chem. Eng. J., 2019, 355: 815.
CrossRef Google scholar
[[27]]
Cavenati S, Grande C A, Rodrigues A E J. Chem. Eng. Data, 2004, 49: 1095.
CrossRef Google scholar
[[28]]
Su F, Lu C, Chen H S Langmuir, 2011, 27: 8090.
CrossRef Google scholar
[[29]]
Quang D V, Dindi A, Rayer A V, Hadri N E, Abdulkadir A, Abu Zahra M R M Energy Procedia, 2014, 63: 2122.
CrossRef Google scholar
[[30]]
Li K, Jiang J, Yan F, Tian S, Chen X Appl. Energy, 2014, 136: 750.
CrossRef Google scholar
[[31]]
Gray M L, Hoffman J S, Hreha D C, Fauth D J, Hedges S W, Champagne K J, Pennline H W Energy Fuels, 2009, 23: 4840.
CrossRef Google scholar
[[32]]
Srikanth C S, Chuang S S C J. Phys. Chem. C, 2013, 117: 9196.
CrossRef Google scholar
[[33]]
Wilfong W C, Srikanth C S, Chuang S S C ACS Appl. Mater. Interfaces, 2014, 6: 13617.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/