High Efficiency Mixed Amine Adsorbents for Directly Capturing Carbon Dioxide from Air

Yilu Wu , Haolong Zheng , Zihan Xia , Chengmin Fu , Feng Xu , Jian Yan

Chemical Research in Chinese Universities ›› : 1 -8.

PDF
Chemical Research in Chinese Universities ›› : 1 -8. DOI: 10.1007/s40242-024-4206-2
Article

High Efficiency Mixed Amine Adsorbents for Directly Capturing Carbon Dioxide from Air

Author information +
History +
PDF

Abstract

The development of effective adsorbents with high amine efficiency and CO2 adsorption almost unaffected by humidity is extremely challenging. In this study, we introduce an innovative solid amine adsorbent, TETA/DEA@FS, composed of triethylenetetramine (TETA) and diethanolamine (DEA) functionalized fumed silica (FS), which exhibits exceptional capability in selectively capturing trace CO2 from N2. TETA/DEA@FS shows an exceptionally high capacity of CO2 adsorption of 1.13 mmol/g at the temperature of 298 K and the pressure of 0.0004 bar (1 bar=100 kPa), and achieves an unprecedented CO2/N2 IAST selectivity of 1.70×1012. TETA/DEA@FS exhibits high amine efficiency, with breakthrough experiments demonstrating that CO2 adsorption remains nearly unaffected by humidity. Meanwhile, TETA/DEA@FS demonstrates rapid CO2 adsorption kinetics and outstanding cyclic stability.

Cite this article

Download citation ▾
Yilu Wu, Haolong Zheng, Zihan Xia, Chengmin Fu, Feng Xu, Jian Yan. High Efficiency Mixed Amine Adsorbents for Directly Capturing Carbon Dioxide from Air. Chemical Research in Chinese Universities 1-8 DOI:10.1007/s40242-024-4206-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlivandM S, McQuillanR V, MomeniA, ZavabetiA, StevensG W, MumfordK A. Small, 2023, 19: 2300150

[2]

KumarR, BandyopadhyayM, PandeyM, TsunojiN. Microporous Mesoporous Mater., 2022, 338: 111956

[3]

ShiX, XiaoH, AzarabadiH, SongJ, WuX, ChenX, LacknerK S. Angew. Chem. Int. Ed., 2020, 59: 6984

[4]

SongM, RimG, KongF, PriyadarshiniP, RosuC, LivelyR P, JonesC W. Ind. Eng. Chem. Res., 2022, 61: 13624

[5]

WangX, ZhaoZ, ZahraK, LiJ, ZhangZ. Chem. Res. Chinese Universities, 2023, 39: 580

[6]

WangH, YangZ, ZhouY, CuiH, ChengZ, ZhouZ. Ind. Eng. Chem. Res., 2023, 62: 16579

[7]

Pangapanga, PhiriI, MungatanaE D. Int. J. Disaster Risk Reduct., 2021, 61: 102322

[8]

KumarA, MaddenD G, LusiM, ChenK J, DanielsE A, CurtinT, PerryJ J IV, ZaworotkoM J. Angew. Chem. Int. Ed., 2015, 54: 14372

[9]

EransM, Sanz PérezE S, HanakD P, ClulowZ, ReinerD M, MutchG A. Energy Environ. Sci., 2022, 15: 1360

[10]

TsiotsiasA I, CharisiouN D, ItalianoC, FerranteG D, PinoL, VitaA, SebastianV, HinderS J, BakerM A, SharanA, SinghN. Appl. Surf. Sci., 2024, 646: 158945

[11]

BalasubramaniamB M, ThierryP T, LethierS, PugnetV, LlewellynP, RajendranA. Chem. Eng. J., 2024, 485: 149568

[12]

JiaX, SunP, LiuA, ChenJ, WangJ, ZhangH, ZhuW. Chem. Res. Chinese Universities, 2023, 39: 680

[13]

RaganatiF, MiccioF, AmmendolaP. Energy Fuels, 2021, 35: 12845

[14]

ChenY, LvD, WuJ, XiaoJ, XiH, XiaQ, LiZ. Chem. Eng. J., 2017, 308: 1065

[15]

XianS, PengJ, ZhangZ, XiaQ, WangH, LiZ. Chem. Eng. J., 2015, 270: 385

[16]

FuD, ParkY, DavisM E. PNAS, 2022, 119: e2211544119

[17]

TaoZ, TianY, OuS Y, GuQ, ShangJ. AlChE J., 2023, 69: e18139

[18]

McDonaldT M, LeeW R, MasonJ A, WiersB M, HongC S, LongJ R. J. Am. Chem. Soc., 2012, 134: 7056

[19]

GoeppertA, CzaunM, MayR B, PrakashG K S, OlahG A, NarayananS R. J. Am. Chem. Soc., 2011, 133: 20164

[20]

LvD, ChenJ, YangK, WuH, ChenY, DuanC, WuY, XiaoJ, XiH, LiZ, XiaQ. Chem. Eng. J., 2019, 375: 122074

[21]

YangJ, ZhaoQ, XuH, LiL, DongJ, LiJ. J. Chem. Eng. Data, 2012, 57: 3701

[22]

WuL, SunJ, ZhuW, WangC, ZhangL, NiuR, HouR, PanY. Ind. Eng. Chem. Res., 2024, 63: 7760

[23]

NugentP, BelmabkhoutY, BurdS D, CairnsA J, LuebkeR, ForrestK, PhamT, MaS, SpaceB, WojtasL, EddaoudiM. Nature, 2013, 495: 80

[24]

WangQ, ChenY, LiuP, WangY, YangJ, LiJ, LiL. Molecules, 2022, 27: 5608

[25]

LiZ, ZhiY, FengX, DingX, ZouY, LiuX, MuY. Chemistry-A European Journal, 2015, 21: 12079

[26]

WuY, LvZ, ZhouX, PengJ, TangY, LiZ. Chem. Eng. J., 2019, 355: 815

[27]

CavenatiS, GrandeC A, RodriguesA E. J. Chem. Eng. Data, 2004, 49: 1095

[28]

SuF, LuC, ChenH S. Langmuir, 2011, 27: 8090

[29]

QuangD V, DindiA, RayerA V, HadriN E, AbdulkadirA, Abu ZahraM R M. Energy Procedia, 2014, 63: 2122

[30]

LiK, JiangJ, YanF, TianS, ChenX. Appl. Energy, 2014, 136: 750

[31]

GrayM L, HoffmanJ S, HrehaD C, FauthD J, HedgesS W, ChampagneK J, PennlineH W. Energy Fuels, 2009, 23: 4840

[32]

SrikanthC S, ChuangS S C. J. Phys. Chem. C, 2013, 117: 9196

[33]

WilfongW C, SrikanthC S, ChuangS S C. ACS Appl. Mater. Interfaces, 2014, 6: 13617

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/