Na Nonstoichiometric Modifications Unraveling the Sodium Ion Mobility and Transport Mechanism in Sodium Solid Electrolyte NaxZn2TeO6

Huangyijia Sun , Xiaohui Li , Xiaoling Zeng , Jian Liu , Aydar Rakhmatullin , Chenjie Lou , Mingxue Tang , Alberto Jose Fernández-Carrión , Xiaojun Kuang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 296 -304.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 296 -304. DOI: 10.1007/s40242-025-4224-8
Article

Na Nonstoichiometric Modifications Unraveling the Sodium Ion Mobility and Transport Mechanism in Sodium Solid Electrolyte NaxZn2TeO6

Author information +
History +
PDF

Abstract

Sodium-ion conducting materials in sodium-ion battery have drawn widespread attention in energy storage technologies due to the advantages of low cost, high performance, and efficient environmental adaptability. Herein, bond valence site energy (BVSE) calculations were used to predict the sodium ion electrical performances by the Na nonstoichiometric modifications, and we have carried out fine experiments to modulate the sodium ion conductivity of NaxZn2TeO6 guided by BVSE calculations. The optimized composition Na2.1Zn2TeO6 shows the superior sodium ionic conductivity of 5.3×10−3 S/cm at 190 °C, with a low activation energy of 0.28 eV. The excess Na preferentially occupies the Na1 site with tetrahedral voids, which has a higher capacity for sodium ion migration, as revealed by the combined neutron powder diffraction technique with the 1D and 2D 23Na solid-state NMR technique, which is responsible for the variations in sodium ion conductivity. In addition, it is worth noting that the resulting Na2.1Zn2TeO6 material maintains superior thermal and phase stability, as well as approximately the same thermal expansion coefficient values even during the temperature rise and fall cycles in the temperature range of 25–800 °C. Furthermore, molecular dynamics simulations revealed that the sodium ions exhibit longrange anisotropic migration within the Na+ interlayers of Na2.1Zn2TeO6.

Keywords

Sodium solid electrolyte / Bond valence site energy / Nonstoichiometric modification / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Huangyijia Sun, Xiaohui Li, Xiaoling Zeng, Jian Liu, Aydar Rakhmatullin, Chenjie Lou, Mingxue Tang, Alberto Jose Fernández-Carrión, Xiaojun Kuang. Na Nonstoichiometric Modifications Unraveling the Sodium Ion Mobility and Transport Mechanism in Sodium Solid Electrolyte NaxZn2TeO6. Chemical Research in Chinese Universities, 2025, 41(2): 296-304 DOI:10.1007/s40242-025-4224-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YangZ, ZhangJ, Kintner-MeyerM C, LuX, ChoiD, LemmonJ P, LiuJChem. Rev., 2011, 111: 3577.

[2]

DunnB, KamathH, TarasconJ-MScience, 2011, 334: 928.

[3]

LuoZ, LiX, WangX, DengS, HeL, LinK, LiQ, XingX, KuangXChem. Mater., 2024, 36: 2835.

[4]

LiX, KuangX, SunJInorg. Chem. Front., 2021, 8: 1374.

[5]

WangY, RichardsW D, OngS P, MiaraL J, KimJ C, MoY, CederGNat. Mater., 2015, 14: 1026.

[6]

DengY, EamesC, ChotardJ-N, LalèreF, SeznecV, EmgeS, PecherO, GreyC P, MasquelierC, IslamM SJ. Am. Chem. Soc., 2015, 137: 9136.

[7]

MaC, ChenK, LiangC, NanC-W, IshikawaR, MoreK, ChiMEnergy Environ. Sci., 2014, 7: 1638.

[8]

LiM, LuJ, ChenZ, AmineKAdv. Mater., 2018, 30: 1800561.

[9]

EtacheriV, MaromR, ElazariR, SalitraG, AurbachDEnergy Environ. Sci., 2011, 4: 3243.

[10]

ManthiramAJ. Phys. Chem. Lett., 2011, 2: 176.

[11]

ZhangF, HeB, XinY, ZhuT, ZhangY, WangS, LiW, YangY, TianHChem. Rev., 2024, 124: 4778.

[12]

SlaterM D, KimD, LeeE, JohnsonC SAdv. Funct. Mater., 2013, 23: 947.

[13]

PalomaresV, Casas-CabanasM, Castillo-MartínezE, HanM H, RojoTEnergy Environ. Sci., 2013, 6: 2312.

[14]

GoodenoughJ B, SinghPJ. Electrochem. Soc., 2015, 162: A2387.

[15]

KimS W, SeoD H, MaX, CederG, KangKAdv. Energy Mater., 2012, 2: 710.

[16]

LiangY, DongH, AurbachD, YaoYNat. Energy, 2020, 5: 646.

[17]

HayashiA, NoiK, SakudaA, TatsumisagoMNat. Commun., 2012, 3: 856.

[18]

WangH, ChenY, HoodZ D, SahuG, PandianA S, KeumJ K, AnK, LiangCAngew. Chem. Int. Ed., 2016, 128: 8693.

[19]

ZhangZ, RamosE, LalèreF, AssoudA, KaupK, HartmanP, NazarL FEnergy Environ. Sci., 2018, 11: 87.

[20]

ZhangL, YangK, MiJ, LuL, ZhaoL, WangL, LiY, ZengHAdv. Energy Mater., 2015, 5: 39

[21]

LeeD-H, LeeS-T, KimJ-S, LimS-KMater. Res. Bull., 2017, 96: 143.

[22]

WangC, FuK, KammampataS P, McOwenD W, SamsonA J, ZhangL, HitzG T, NolanA M, WachsmanE D, MoYChem. Rev., 2020, 120: 4257.

[23]

AnantharamuluN, Koteswara RaoK, RambabuG, Vijaya KumarB, RadhaV, VithalMJ. Mater. Sci., 2011, 46: 2821.

[24]

LuX, XiaG, LemmonJ P, YangZJPS, 2010, 195: 2431

[25]

MaQ, GuinM, NaqashS, TsaiC-L, TietzF, GuillonOChem. Mater., 2016, 28: 4821.

[26]

HongH-PMater. Res. Bull., 1976, 11: 173.

[27]

LuZ, LiuJ, CiucciFESM, 2020, 28: 146

[28]

HuangH, WuH-H, ChiC, ZhuJ, HuangB, ZhangT-YNanoscale, 2019, 11: 18758.

[29]

MizushimaK, JonesP, WisemanP, GoodenoughJ BMater. Res. Bull., 1980, 15: 783.

[30]

ZhaoS, LuoJ, ZhouP, ZhangS Q, SunZ, HongMJ. RSC Adv., 2013, 3: 14000.

[31]

EvstigneevaM A, NalbandyanV B, PetrenkoA A, MedvedevB S, KataevA AChem. Mater., 2011, 23: 1174.

[32]

BerthelotR, SchmidtW, SleightA, SubramanianMJ. Solid State Chem., 2012, 196: 225.

[33]

ChenH, WongL L, AdamsSActa Cryst., 2019, 75: 18

[34]

WongL L, PhuahK C, DaiR, ChenH, ChewW S, AdamsSChem. Mater., 2021, 33: 625.

[35]

ChenH, AdamsSIUCrJ, 2017, 4: 614.

[36]

TanibataN, TakimotoS, NakanoK, TakedaH, NakayamaM, SumiHACS Mater. Lett., 2020, 2: 880.

[37]

TanibataN, KondoY, YamadaS, MaedaM, TakedaH, NakayamaM, AsakaT, KitajouA, OkadaSSci. Rep., 2018, 8: 17199.

[38]

ChenJ, KangL, LuH, LuoP, WangF, HeLPhysica B, 2018, 551: 370.

[39]

CoelhoATOPAS: General Profile and Structure Analysis Software for Powder Diffraction Data, 2003Karlsruhe, GermanyBruker AXS GmbH

[40]

PilolliR, DitarantoN, CioffiN, SabbatiniLAnal. Bioanal. Chem., 2013, 405: 713.

[41]

MassiotD, FayonF, CapronM, KingI, Le CalvéS, AlonsoB, DurandJ O, BujoliB, GanZ, HoatsonGMagn. Reson. Chem., 2002, 40: 70.

[42]

JohnsonDZview for Windows, Impedance/Gain Phase Graphing and Analysis Software, 2001North CarolinaScribner Associates

[43]

GaleJ D, RohlA LMol. Simul., 2003, 29: 291.

[44]

CatlowC R AJ. Chem. Soc., 1989, 85: 335

[45]

BushT S, GaleJ D, CatlowC R AJ. Mater. Chem., 1994, 4: 831.

[46]

BinksD JComputational Modelling of Zinc Oxide and Related Oxide Ceramics, 1994United KingdomUniversity of Surrey Guildford

[47]

SangsterM, AtwoodRJournal of Physics C: Solid State Physics, 1978, 11: 1541.

[48]

HumphreyW, DalkeA, SchultenKJ. Mol. Graphics., 1996, 14: 33.

[49]

RógT, MurzynK, HinsenK, KnellerG RJ. Comput. Chem., 2003, 24: 657.

[50]

EvstigneevaM A, NalbandyanV B, PetrenkoA A, MedvedevB S, KataevA AChem. Mater., 2011, 23: 1174.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

238

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/