Na Nonstoichiometric Modifications Unraveling the Sodium Ion Mobility and Transport Mechanism in Sodium Solid Electrolyte Na xZn2TeO6

Huangyijia Sun, Xiaohui Li, Xiaoling Zeng, Jian Liu, Aydar Rakhmatullin, Chenjie Lou, Mingxue Tang, Alberto Jose Fernández-Carrión, Xiaojun Kuang

Chemical Research in Chinese Universities ›› 2025

Chemical Research in Chinese Universities ›› 2025 DOI: 10.1007/s40242-025-4224-8
Article

Na Nonstoichiometric Modifications Unraveling the Sodium Ion Mobility and Transport Mechanism in Sodium Solid Electrolyte Na xZn2TeO6

Author information +
History +

Abstract

Sodium-ion conducting materials in sodium-ion battery have drawn widespread attention in energy storage technologies due to the advantages of low cost, high performance, and efficient environmental adaptability. Herein, bond valence site energy (BVSE) calculations were used to predict the sodium ion electrical performances by the Na nonstoichiometric modifications, and we have carried out fine experiments to modulate the sodium ion conductivity of Na xZn2TeO6 guided by BVSE calculations. The optimized composition Na2.1Zn2TeO6 shows the superior sodium ionic conductivity of 5.3×10−3 S/cm at 190 °C, with a low activation energy of 0.28 eV. The excess Na preferentially occupies the Na1 site with tetrahedral voids, which has a higher capacity for sodium ion migration, as revealed by the combined neutron powder diffraction technique with the 1D and 2D 23Na solid-state NMR technique, which is responsible for the variations in sodium ion conductivity. In addition, it is worth noting that the resulting Na2.1Zn2TeO6 material maintains superior thermal and phase stability, as well as approximately the same thermal expansion coefficient values even during the temperature rise and fall cycles in the temperature range of 25–800 °C. Furthermore, molecular dynamics simulations revealed that the sodium ions exhibit longrange anisotropic migration within the Na+ interlayers of Na2.1Zn2TeO6.

Cite this article

Download citation ▾
Huangyijia Sun, Xiaohui Li, Xiaoling Zeng, Jian Liu, Aydar Rakhmatullin, Chenjie Lou, Mingxue Tang, Alberto Jose Fernández-Carrión, Xiaojun Kuang. Na Nonstoichiometric Modifications Unraveling the Sodium Ion Mobility and Transport Mechanism in Sodium Solid Electrolyte Na xZn2TeO6. Chemical Research in Chinese Universities, 2025 https://doi.org/10.1007/s40242-025-4224-8

References

[[1]]
Yang Z, Zhang J, Kintner-Meyer M C, Lu X, Choi D, Lemmon J P, Liu J Chem. Rev., 2011, 111: 3577.
CrossRef Google scholar
[[2]]
Dunn B, Kamath H, Tarascon J-M Science, 2011, 334: 928.
CrossRef Google scholar
[[3]]
Luo Z, Li X, Wang X, Deng S, He L, Lin K, Li Q, Xing X, Kuang X Chem. Mater., 2024, 36: 2835.
CrossRef Google scholar
[[4]]
Li X, Kuang X, Sun J Inorg. Chem. Front., 2021, 8: 1374.
CrossRef Google scholar
[[5]]
Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y, Ceder G Nat. Mater., 2015, 14: 1026.
CrossRef Google scholar
[[6]]
Deng Y, Eames C, Chotard J-N, Lalère F, Seznec V, Emge S, Pecher O, Grey C P, Masquelier C, Islam M S J. Am. Chem. Soc., 2015, 137: 9136.
CrossRef Google scholar
[[7]]
Ma C, Chen K, Liang C, Nan C-W, Ishikawa R, More K, Chi M Energy Environ. Sci., 2014, 7: 1638.
CrossRef Google scholar
[[8]]
Li M, Lu J, Chen Z, Amine K Adv. Mater., 2018, 30: 1800561.
CrossRef Google scholar
[[9]]
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D Energy Environ. Sci., 2011, 4: 3243.
CrossRef Google scholar
[[10]]
Manthiram A J. Phys. Chem. Lett., 2011, 2: 176.
CrossRef Google scholar
[[11]]
Zhang F, He B, Xin Y, Zhu T, Zhang Y, Wang S, Li W, Yang Y, Tian H Chem. Rev., 2024, 124: 4778.
CrossRef Google scholar
[[12]]
Slater M D, Kim D, Lee E, Johnson C S Adv. Funct. Mater., 2013, 23: 947.
CrossRef Google scholar
[[13]]
Palomares V, Casas-Cabanas M, Castillo-Martínez E, Han M H, Rojo T Energy Environ. Sci., 2013, 6: 2312.
CrossRef Google scholar
[[14]]
Goodenough J B, Singh P J. Electrochem. Soc., 2015, 162: A2387.
CrossRef Google scholar
[[15]]
Kim S W, Seo D H, Ma X, Ceder G, Kang K Adv. Energy Mater., 2012, 2: 710.
CrossRef Google scholar
[[16]]
Liang Y, Dong H, Aurbach D, Yao Y Nat. Energy, 2020, 5: 646.
CrossRef Google scholar
[[17]]
Hayashi A, Noi K, Sakuda A, Tatsumisago M Nat. Commun., 2012, 3: 856.
CrossRef Google scholar
[[18]]
Wang H, Chen Y, Hood Z D, Sahu G, Pandian A S, Keum J K, An K, Liang C Angew. Chem. Int. Ed., 2016, 128: 8693.
CrossRef Google scholar
[[19]]
Zhang Z, Ramos E, Lalère F, Assoud A, Kaup K, Hartman P, Nazar L F Energy Environ. Sci., 2018, 11: 87.
CrossRef Google scholar
[[20]]
Zhang L, Yang K, Mi J, Lu L, Zhao L, Wang L, Li Y, Zeng H Adv. Energy Mater., 2015, 5: 39
[[21]]
Lee D-H, Lee S-T, Kim J-S, Lim S-K Mater. Res. Bull., 2017, 96: 143.
CrossRef Google scholar
[[22]]
Wang C, Fu K, Kammampata S P, McOwen D W, Samson A J, Zhang L, Hitz G T, Nolan A M, Wachsman E D, Mo Y Chem. Rev., 2020, 120: 4257.
CrossRef Google scholar
[[23]]
Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha V, Vithal M J. Mater. Sci., 2011, 46: 2821.
CrossRef Google scholar
[[24]]
Lu X, Xia G, Lemmon J P, Yang Z JPS, 2010, 195: 2431
[[25]]
Ma Q, Guin M, Naqash S, Tsai C-L, Tietz F, Guillon O Chem. Mater., 2016, 28: 4821.
CrossRef Google scholar
[[26]]
Hong H-P Mater. Res. Bull., 1976, 11: 173.
CrossRef Google scholar
[[27]]
Lu Z, Liu J, Ciucci F ESM, 2020, 28: 146
[[28]]
Huang H, Wu H-H, Chi C, Zhu J, Huang B, Zhang T-Y Nanoscale, 2019, 11: 18758.
CrossRef Google scholar
[[29]]
Mizushima K, Jones P, Wiseman P, Goodenough J B Mater. Res. Bull., 1980, 15: 783.
CrossRef Google scholar
[[30]]
Zhao S, Luo J, Zhou P, Zhang S Q, Sun Z, Hong M J. RSC Adv., 2013, 3: 14000.
CrossRef Google scholar
[[31]]
Evstigneeva M A, Nalbandyan V B, Petrenko A A, Medvedev B S, Kataev A A Chem. Mater., 2011, 23: 1174.
CrossRef Google scholar
[[32]]
Berthelot R, Schmidt W, Sleight A, Subramanian M J. Solid State Chem., 2012, 196: 225.
CrossRef Google scholar
[[33]]
Chen H, Wong L L, Adams S Acta Cryst., 2019, 75: 18
[[34]]
Wong L L, Phuah K C, Dai R, Chen H, Chew W S, Adams S Chem. Mater., 2021, 33: 625.
CrossRef Google scholar
[[35]]
Chen H, Adams S IUCrJ, 2017, 4: 614.
CrossRef Google scholar
[[36]]
Tanibata N, Takimoto S, Nakano K, Takeda H, Nakayama M, Sumi H ACS Mater. Lett., 2020, 2: 880.
CrossRef Google scholar
[[37]]
Tanibata N, Kondo Y, Yamada S, Maeda M, Takeda H, Nakayama M, Asaka T, Kitajou A, Okada S Sci. Rep., 2018, 8: 17199.
CrossRef Google scholar
[[38]]
Chen J, Kang L, Lu H, Luo P, Wang F, He L Physica B, 2018, 551: 370.
CrossRef Google scholar
[[39]]
Coelho A TOPAS: General Profile and Structure Analysis Software for Powder Diffraction Data, 2003 Karlsruhe, Germany Bruker AXS GmbH
[[40]]
Pilolli R, Ditaranto N, Cioffi N, Sabbatini L Anal. Bioanal. Chem., 2013, 405: 713.
CrossRef Google scholar
[[41]]
Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J O, Bujoli B, Gan Z, Hoatson G Magn. Reson. Chem., 2002, 40: 70.
CrossRef Google scholar
[[42]]
Johnson D Zview for Windows, Impedance/Gain Phase Graphing and Analysis Software, 2001 North Carolina Scribner Associates
[[43]]
Gale J D, Rohl A L Mol. Simul., 2003, 29: 291.
CrossRef Google scholar
[[44]]
Catlow C R A J. Chem. Soc., 1989, 85: 335
[[45]]
Bush T S, Gale J D, Catlow C R A J. Mater. Chem., 1994, 4: 831.
CrossRef Google scholar
[[46]]
Binks D J Computational Modelling of Zinc Oxide and Related Oxide Ceramics, 1994 United Kingdom University of Surrey Guildford
[[47]]
Sangster M, Atwood R Journal of Physics C: Solid State Physics, 1978, 11: 1541.
CrossRef Google scholar
[[48]]
Humphrey W, Dalke A, Schulten K J. Mol. Graphics., 1996, 14: 33.
CrossRef Google scholar
[[49]]
Róg T, Murzyn K, Hinsen K, Kneller G R J. Comput. Chem., 2003, 24: 657.
CrossRef Google scholar
[[50]]
Evstigneeva M A, Nalbandyan V B, Petrenko A A, Medvedev B S, Kataev A A Chem. Mater., 2011, 23: 1174.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/