Anti-fouling Hydrophobic Coatings via Single-step Silane Hydrolysis

Saiya Li, Qinwen Hou, Huiping Chen, Yule Jia, Dongyang Zhang, Yunge Liu, Jing Zhang, Yuan Su, Dianyu Wang

Chemical Research in Chinese Universities ›› 2024

Chemical Research in Chinese Universities ›› 2024 DOI: 10.1007/s40242-024-4188-0
Article

Anti-fouling Hydrophobic Coatings via Single-step Silane Hydrolysis

Author information +
History +

Abstract

Superhydrophobic coatings have tremendous potential for cotton fabric applications in antifouling and antibacterial. Despite great scientific and industrial interest in waterproof cellulosic cotton, its application in cotton fibres has been hindered by complicated processes, templates requirement, and limitations in scale-up production. Herein, we prepared a hydrophobic coating using one-step hydrolysis of siloxane. Through the reaction of long-chain organosilanes with acid, micro/nanostructures with low surface energy were constructed on the cotton fabric surface. Notably, the coating not only imparts self-cleaning and anti-bacterial adhesion properties to cotton fabrics, but also maintains a contact angle of over 140° after treatment with acid, alkali, organic solvents and extreme temperatures. In addition, the coating can be applied to a wide range of metals, plastics and paper to provide antifouling properties. This study believes that these excellent overall properties possess enormous potential for various applications involving anti-fouling.

Cite this article

Download citation ▾
Saiya Li, Qinwen Hou, Huiping Chen, Yule Jia, Dongyang Zhang, Yunge Liu, Jing Zhang, Yuan Su, Dianyu Wang. Anti-fouling Hydrophobic Coatings via Single-step Silane Hydrolysis. Chemical Research in Chinese Universities, 2024 https://doi.org/10.1007/s40242-024-4188-0

References

[[1]]
XuL, LiuY, YuanX, WanJ, WangL, PanH, ShenY. Cellulose, 2020, 27: 9005
CrossRef Google scholar
[[2]]
HuangC, CaiY, ChenX, KeY. Cellulose, 2021, 29: 723
CrossRef Google scholar
[[3]]
WangL, ChenM, CaiR, JiangJ, XiangS, LiuX, DiaoH. Chem. Eng. J., 2023, 475: 146386
CrossRef Google scholar
[[4]]
BaidyaA, GanayeeM A, Jakka RavindranS, TamK C, DasS K, RasR H A, PradeepT. ACS Nano, 2017, 11: 11091
CrossRef Google scholar
[[5]]
MollebjergA, PalménL G, GoriK, MeyerR L, GralnickJ A. Microbiol. Spectr., 2021, 9: e01185
CrossRef Google scholar
[[6]]
HanH, ZhuJ, WuD Q, LiF X, WangX L, YuJ Y, QinX H. Adv. Funct. Mater., 2019, 29: 1806594
CrossRef Google scholar
[[7]]
YanK, ChenH, LiX, XuF, WangJ, XuQ, ZongY, ZhangY. ACS Appl. Mater. Interfaces, 2024, 16: 5196
CrossRef Google scholar
[[8]]
WangY, YangY, ShiY, SongH, YuC. Adv, Mater., 2019, 32: 1904106
CrossRef Google scholar
[[9]]
GalanteA J, HaghanifarS, RomanowskiE G, ShanksR M Q, LeuP W. ACS Appl. Mater. Interfaces, 2020, 12: 22120
CrossRef Google scholar
[[10]]
ZhouH, LiQ, ZhangZ, WangX, NiuH. Adv. Fiber. Mater., 2023, 5: 1555
CrossRef Google scholar
[[11]]
XuQ, ShenL, DuanP, ZhangL, FuF, LiuX. Chem. Eng. J., 2020, 379: 122401
CrossRef Google scholar
[[12]]
ShenW, ZhangL, LiX, YuH-Z. Sci. Rep-uk, 2019, 9: 9172
CrossRef Google scholar
[[13]]
Bolaños-CardetJ, Ruiz-MolinaD, YusteV J, Suárez-GarcíaS. Chem. Eng. J., 2024, 481: 148674
CrossRef Google scholar
[[14]]
ZhuT, WuJ, ZhaoN, CaiC, QianZ, SiF, LuoH, GuoJ, LaiX, ShaoL, XuJ. Adv. Healthc. Mater., 2018, 7: e1701086
CrossRef Google scholar
[[15]]
TeslerA B, KolleS, PradoL H, ThievessenI, BöhringerD, BackholmM, KarunakaranB, NurmiH A, LatikkaM, FischerL, StafslienS, CenevZ M, TimonenJ V I, BrunsM, MazareA, LohbauerU, VirtanenS, FabryB, SchmukiP, RasR H A, AizenbergJ, GoldmannW H. Nat. Mater., 2023, 22: 1548
CrossRef Google scholar
[[16]]
YeM, WangS, JiX, TianZ, DaiL, SiC. Adv. Compos. Hybrid Ma., 2022, 6: 30
CrossRef Google scholar
[[17]]
HeQ, WangJ, WangG, HaoX, LiA. Mater. Design, 2023, 233: 112258
CrossRef Google scholar
[[18]]
XuY, LiX, WangX, LuoZ, LiaoJ, TaoY, XuM. Appl. Surf. Sci., 2023, 611: 155654
CrossRef Google scholar
[[19]]
RoismanI V, TropeaC. Curr. Opin. Colloid In., 2021, 53: 101400
CrossRef Google scholar
[[20]]
GolovinK, DhyaniA, ThoulessM D, TutejaA. Science, 2019, 364: 371
CrossRef Google scholar
[[21]]
SongQ, ZhaoR, LiuT, GaoL, SuC, YeY, ChanS Y, LiuX, WangK, LiP, HuangW. Chem. Eng. J., 2021, 418: 129368
CrossRef Google scholar
[[22]]
RazaviS M R, OhJ, HaaschR T, KimK, MasoomiM, BagheriR, SlauchJ M, MiljkovicN. ACS Sustainable Chem. Eng., 2019, 7: 14509
CrossRef Google scholar
[[23]]
SeeharajP, PasupongP, DetsriE, DamrongsakP. Mater. Sci., 2017, 53: 4828
CrossRef Google scholar
[[24]]
PanS, GuoR, BjornmalmM, RichardsonJ J, LiL, PengC, Bertleff-ZieschangN, XuW, JiangJ, CarusoF. Nat. Mater., 2018, 17: 1040
CrossRef Google scholar
[[25]]
LiH, ZhaoY, QiuY, GaoH, HeK, YangJ, ZhaoY, OuyangG, MaN, WeiX, DuZ, JiangL, WuY. Adv. Mater., 2024, 36: 2314061
CrossRef Google scholar
[[26]]
LiZ, CaoM, LiP, ZhaoY, BaiH, WuY, JiangL. Matter., 2019, 1: 661
CrossRef Google scholar
[[27]]
YilbasB S, SalhiB, YousafM R, Al-SulaimanF, AliH, Al-AqeeliN. Sci. Rep-uk, 2016, 6: 38578
CrossRef Google scholar
[[28]]
ZhangY, ZhangZ, YangJ, YueY, ZhangH. Chem. Phys. Lett., 2022, 797: 139567
CrossRef Google scholar
[[29]]
GaoH, FengJ, PiY, ZhouZ, ZhangB, WuY, WangX, JiangX, JiangL. Adv. Funct. Mater., 2018, 28: 1804349
CrossRef Google scholar
[[30]]
BadvM, JafferI H, WeitzJ I, DidarT F. Sci. Rep-uk, 2017, 7: 11639
CrossRef Google scholar
[[31]]
ZhaoH, ParkS J, SolomonB R, KimS, SotoD, PaxsonA T, VaranasiK K, HartA J. Adv. Mater., 2019, 31: e1807686
CrossRef Google scholar
[[32]]
DurretJ, SzkutnikP-D, FroletN, LabauS, GourgonC. Appl. Surf. Sci., 2018, 445: 97
CrossRef Google scholar
[[33]]
ZhaoY, FengJ, ChenG, WuJ J, WangX D, JiangL, WuY. Adv. Mater., 2022, 34: 2110695
CrossRef Google scholar
[[34]]
CelikN, TorunI, RuziM, EsidirA, OnsesM S. Chem. Eng. J., 2020, 396: 125230
CrossRef Google scholar
[[35]]
KwonG, ParkJ, LeeK, KoY, JeonY, LeeS, KimJ, YouJ. Polymers, 2023, 15: 1901
CrossRef Google scholar
[[36]]
ZhangL, ZhengG-Q, ChenX-L, GuoS-Q, ZengF-R, LiuB-W, ZengX-L, LanX-S, WangY-Z, ZhaoH-B. ACS Materials Lett., 2023, 5: 2398
CrossRef Google scholar
[[37]]
HasanzadehM, Shahriyari FarH, HajiA, RosaceG. Coatings, 2022, 12: 398
CrossRef Google scholar
[[38]]
WangL, McCarthyT. J. Angewandte Chemie, 2016, 55: 244
CrossRef Google scholar
[[39]]
WoohS, VollmerD. Angew Chem. Int. Edit., 2016, 55: 6822
CrossRef Google scholar
[[40]]
BrehmM, ScheigerJ M, WelleA, LevkinP A. Adv. Mater. Interfaces, 2020, 7: 1902134
CrossRef Google scholar
[[41]]
ShaX, ChenL, JiaY, ZhaoH, ZuoS, YuanP, ChenG. Chem. Eng. J., 2024, 499: 155797
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/