From Single-atom to Bi-atom and Ordered Multi-atom: Not Just a Number Changing for Electrocatalysis

Wenting Lu, Xiao Zhao

Chemical Research in Chinese Universities ›› 2025

Chemical Research in Chinese Universities ›› 2025 DOI: 10.1007/s40242-025-4207-9
Review

From Single-atom to Bi-atom and Ordered Multi-atom: Not Just a Number Changing for Electrocatalysis

Author information +
History +

Abstract

Atomically dispersed catalysts, i.e., single-atom catalysts (SACs), have attracted considerable interest because of their 100% atom utilization and unique geometric and electronic structures relative to nanoparticles. Atomic manipulation enables the construction of well-defined active sites on an atom-by-atom basis, which is particularly intriguing for electrocatalysis. Bi-atom catalysts (BACs) represent an important branch, where atomic pairs can markedly enhance the efficiency and selectivity of electrocatalysis. Emerging as a new subclass, ordered multiatom catalysts (OMACs) have received significant attention recently. Unlike randomly distributed single atoms, the OMACs possess ordered atomic arrangements, like atomic arrays and ordered single-atom alloys. Geometrically, this order could enhance intrinsic activity and reaction selectivity by making interatomic distance just right or customizing atomic arrangements for the lower activation energy pathway, and simultaneously improve the density of active sites to some extent. Electronically, this order may induce new electronic states and/or strong orbital hybridization between neighboring atoms, thereby enabling unexpected activity. The ensemble effect and/or synergistic effect would become feasible by rational regulation of atomic arrangements and components of OMACs. We herein reviewed the recent advance from single-atom to biatom and ordered multiatom mainly emphasizing OMACs, discussed their synthesis, characterizations, and electrocatalytic applications, and finally proposed some challenges and prospects for better developing single-atom catalysis.

Cite this article

Download citation ▾
Wenting Lu, Xiao Zhao. From Single-atom to Bi-atom and Ordered Multi-atom: Not Just a Number Changing for Electrocatalysis. Chemical Research in Chinese Universities, 2025 https://doi.org/10.1007/s40242-025-4207-9

References

[[1]]
Gao G, Zhao G, Zhu G, Sun B, Sun Z, Li S, Lan Y-Q Chin. Chem. Lett., 2025, 36: 109557.
CrossRef Google scholar
[[2]]
Dou J, Zhang T, Chen S, Dong S Chem. Eng. Sci., 2025, 302: 120818.
CrossRef Google scholar
[[3]]
Mohan A, Sharma S Electrochim. Acta, 2024, 508: 145218.
CrossRef Google scholar
[[4]]
Zhai W, Ma Y, Chen D, Ho J C, Dai Z, Qu Y InfoMat, 2022, 4: e12357.
CrossRef Google scholar
[[5]]
He Q, Zhou Y, Shou H, Wang X, Zhang P, Xu W, Qiao S, Wu C, Liu H, Liu D, Chen S, Long R, Qi Z, Wu X, Song L Adv. Mater., 2022, 34: 2110604.
CrossRef Google scholar
[[6]]
Jiang K, Luo M, Liu Z, Peng M, Chen D, Lu Y-R, Chan T-S, de Groot F M F, Tan Y Nat. Commun., 2021, 12: 1687.
CrossRef Google scholar
[[7]]
Cheng X, Lu Y, Zheng L, Pupucevski M, Li H, Chen G, Sun S, Wu G Mater. Today Energy, 2021, 20: 100653.
CrossRef Google scholar
[[8]]
Zhou Z, Pei Z, Wei L, Zhao S, Jian X, Chen Y Energy Environ. Sci., 2020, 13: 3185.
CrossRef Google scholar
[[9]]
Lei Y, Wang Y, Liu Y, Song C, Li Q, Wang D, Li Y Angew. Chem. Int. Ed., 2020, 59: 20794.
CrossRef Google scholar
[[10]]
Wang J, Xu F, Jin H, Chen Y, Wang Y Adv. Mater., 2017, 29: 1605838.
CrossRef Google scholar
[[11]]
Zhang C, Liu Z, Zou Y, Xu F, Sun L, Hu Z, Yu S, Xiang C J. Alloys Compd., 2025, 1010: 177253.
CrossRef Google scholar
[[12]]
Xi W, Wu T, Wang P, Huang W, Gao B, He L, Chen Y, Lin B J. Colloid Interface Sci., 2025, 680: 355.
CrossRef Google scholar
[[13]]
Ajmal M, Zhang S, Guo X, Liu X, Shi C, Gao R, Huang Z-F, Pan L, Zhang X, Zou J-J Appl. Catal. B Environ., 2025, 361: 124561.
CrossRef Google scholar
[[14]]
Shi Z, Li J, Wang Y, Liu S, Zhu J, Yang J, Wang X, Ni J, Jiang Z, Zhang L, Wang Y, Liu C, Xing W, Ge J Nat. Commun., 2023, 14: 843.
CrossRef Google scholar
[[15]]
Hao Y, Hung S-F, Zeng W-J, Wang Y, Zhang C, Kuo C-H, Wang L, Zhao S, Zhang Y, Chen H-Y, Peng S J. Am. Chem. Soc., 2023, 145: 23659.
CrossRef Google scholar
[[16]]
Zhu Y, Wang J, Koketsu T, Kroschel M, Chen J-M, Hsu S-Y, Henkelman G, Hu Z, Strasser P, Ma J Nat. Commun., 2022, 13: 7754.
CrossRef Google scholar
[[17]]
Li J Nano Micro Lett., 2022, 14: 112.
CrossRef Google scholar
[[18]]
Shi Z, Wang Y, Li J, Wang X, Wang Y, Li Y, Xu W, Jiang Z, Liu C, Xing W, Ge J Joule, 2021, 5: 2164.
CrossRef Google scholar
[[19]]
Li S, Chen B, Wang Y, Ye M-Y, van Aken P A, Cheng C, Thomas A Nat. Mater., 2021, 20: 1240.
CrossRef Google scholar
[[20]]
Song J, Wei C, Huang Z-F, Liu C, Zeng L, Wang X, Xu Z J Chem. Soc. Rev., 2020, 49: 2196.
CrossRef Google scholar
[[21]]
Zhou Y, Liu Y, Yan Y, Yi Z, Li Y, Chen C-M Chin. Chem. Lett., 2025, 36: 109569.
CrossRef Google scholar
[[22]]
Guo Q, Yang Y, Hu T, Chu H, Liao L, Wang X, Li Z, Guo L, Zhou W Chin. Chem. Lett., 2025, 36: 110235.
CrossRef Google scholar
[[23]]
Xu X, Li X, Lu W, Sun X, Huang H, Cui X, Li L, Zou X, Zheng W, Zhao X Angew. Chem. Int. Ed., 2024, 63: e202400765.
CrossRef Google scholar
[[24]]
Sun K, Dong J, Sun H, Wang X, Fang J, Zhuang Z, Tian S, Sun X Nat. Catal., 2023, 6: 1164.
CrossRef Google scholar
[[25]]
Liu R, Tang R, Feng J, Meng T Chem. Eng. J., 2023, 470: 144261.
CrossRef Google scholar
[[26]]
Chu Y, Luo E, Wei Y, Zhu S, Wang X, Yang L, Gao N, Wang Y, Jiang Z, Liu C, Ge J, Xing W Chem. Catal., 2023, 3: 100532.
CrossRef Google scholar
[[27]]
Wan X, Liu Q T, Liu J Y, Liu S Y, Liu X F, Zheng L R, Shang J X, Yu R H, Shui J L Nat. Commun., 2022, 13: 2963.
CrossRef Google scholar
[[28]]
Xiao M, Chen Y, Zhu J, Zhang H, Zhao X, Gao L, Wang X, Zhao J, Ge J, Jiang Z, Chen S, Liu C, Xing W J. Am. Chem. Soc., 2019, 141: 17763.
CrossRef Google scholar
[[29]]
Chen Y, Ji S, Zhao S, Chen W, Dong J, Cheong W C, Shen R, Wen X, Zheng L, Rykov A I, Cai S, Tang H, Zhuang Z, Chen C, Peng Q, Wang D, Li Y Nat. Commun., 2018, 9: 5422.
CrossRef Google scholar
[[30]]
Chung H T, Cullen D A, Higgins D, Sneed B T, Holby E F, More K L, Zelenay P Science, 2017, 357: 479.
CrossRef Google scholar
[[31]]
Wu G, More K L, Johnston C M, Zelenay P Science, 2011, 332: 443.
CrossRef Google scholar
[[32]]
Fallahzadeh M, Kokabi A, Nasiri Mahd Z, Fayazi M Appl. Surf. Sci., 2025, 682: 161651.
CrossRef Google scholar
[[33]]
Li B, Ou H, Chen S, Su Y-Q, Wang D Chem. Res. Chinese Universities, 2023, 39: 527.
CrossRef Google scholar
[[34]]
Pei J, Yang L, Lin J, Zhang Z, Sun Z, Wang D, Chen W Angew. Chem. Int. Ed., 2024, 63: e202316123.
CrossRef Google scholar
[[35]]
Li X, Wang S, Li L, Sun Y, Xie Y J. Am. Chem. Soc., 2020, 142: 9567
[[36]]
Liu X, He N, Ni H, Wang S, Yang J, Guo G, Kang Y, Liu Y, Zhou C, Tong L, Lu B, Wang Q, Yang M, Han S, Li W, Han Z Appl. Catal., A, 2024, 688: 119990.
CrossRef Google scholar
[[37]]
Yao Y, Zhao L, Dai J, Wang J, Fang C, Zhan G, Zheng Q, Hou W, Zhang L Angew. Chem. Int. Ed., 2022, 61: e202208215.
CrossRef Google scholar
[[38]]
Xu H, Ma Y, Chen J, Zhang W-X, Yang J Chem. Soc. Rev., 2022, 51: 2710.
CrossRef Google scholar
[[39]]
Cheng X-F, He J-H, Ji H-Q, Zhang H-Y, Cao Q, Sun W-J, Yan C-L, Lu J-M Adv. Mater., 2022, 34: 2205767.
CrossRef Google scholar
[[40]]
Wang Y, Wang C, Li M, Yu Y, Zhang B Chem. Soc. Rev., 2021, 50: 6720.
CrossRef Google scholar
[[41]]
Asakura K, Nagahiro H, Ichikuni N, Iwasawa Y Appl. Catal., A, 1999, 188: 313.
CrossRef Google scholar
[[42]]
Fu Q, Saltsburg H, Flytzani-Stephanopoulos M Science, 2003, 301: 935.
CrossRef Google scholar
[[43]]
Hackett S F J, Brydson R M, Gass M H, Harvey I, Newman A D, Wilson K, Lee A F Angew. Chem. Int. Ed., 2007, 46: 8593.
CrossRef Google scholar
[[44]]
Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T Nat. Chem., 2011, 3: 634.
CrossRef Google scholar
[[45]]
Zhang H, Liu G, Shi L, Ye J Adv. Energy Mater., 2018, 8: 1701343.
CrossRef Google scholar
[[46]]
Cheng N, Zhang L, Doyle-Davis K, Sun X Electrochem. Energy Rev., 2019, 2: 539.
CrossRef Google scholar
[[47]]
Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X Chem. Rev., 2019, 119: 1806.
CrossRef Google scholar
[[48]]
He Z, He K, Robertson A W, Kirkland A I, Kim D, Ihm J, Yoon E, Lee G-D, Warner J H Nano Lett., 2014, 14: 3766.
CrossRef Google scholar
[[49]]
Zhang W, Chao Y, Zhang W, Zhou J, Lv F, Wang K, Lin F, Luo H, Li J, Tong M, Wang E, Guo S Adv. Mater., 2021, 33: 2102576.
CrossRef Google scholar
[[50]]
Li R, Wang D Adv. Energy Mater., 2022, 12: 2103564.
CrossRef Google scholar
[[51]]
Jin Z, Yang M, Dong Y, Ma X, Wang Y, Wu J, Fan J, Wang D, Xi R, Zhao X, Xu T, Zhao J, Zhang L, Singh D J, Zheng W, Cui X Nano-Micro Lett., 2023, 16: 4.
CrossRef Google scholar
[[52]]
Pu T, Ding J, Zhang F, Wang K, Cao N, Hensen E J M, Xie P Angew. Chem. Int. Ed., 2023, 62: e202305964.
CrossRef Google scholar
[[53]]
Zhu P, Xiong X, Wang D, Li Y Adv. Energy Mater., 2023, 13: 2300884.
CrossRef Google scholar
[[54]]
Wong M-K, Foo J J, Loh J Y, Ong W-J Adv. Energy Mater., 2024, 14: 2303281.
CrossRef Google scholar
[[55]]
Ren Y, Wang J, Zhang M, Wang Y, Cao Y, Kim D H, Lin Z Angew. Chem. Int. Ed., 2024, 63: e202315003.
CrossRef Google scholar
[[56]]
Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y Chem. Rev., 2020, 120: 11900.
CrossRef Google scholar
[[57]]
Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J, Zhang T J. Am. Chem. Soc., 2013, 135: 15314.
CrossRef Google scholar
[[58]]
Liang Z, Qu C, Xia D, Zou R, Xu Q Angew. Chem. Int. Ed. Engl., 2018, 57: 9604.
CrossRef Google scholar
[[59]]
Ren Q, Wang H, Lu X F, Tong Y X, Li G R Adv. Sci. (Weinh), 2018, 5: 1700515.
CrossRef Google scholar
[[60]]
Van Vleet M J, Weng T, Li X, Schmidt J R Chem Rev, 2018, 118: 3681.
CrossRef Google scholar
[[61]]
Wei Y S, Zhang M, Zou R, Xu Q Chem Rev., 2020, 120: 12089.
CrossRef Google scholar
[[62]]
Chen S, Cui M, Yin Z, Xiong J, Mi L, Li Y ChemSusChem, 2021, 14: 73.
CrossRef Google scholar
[[63]]
Li Y, Karimi M, Gong Y-N, Dai N, Safarifard V, Jiang H-L Matter, 2021, 4: 2230.
CrossRef Google scholar
[[64]]
Liu L, Xu Q, Zhu Q-L Adv. Energy Sustainability Res., 2021, 2: 2100100.
CrossRef Google scholar
[[65]]
Zou L, Wei Y S, Hou C C, Li C, Xu Q Small, 2021, 17: e2004809.
CrossRef Google scholar
[[66]]
Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y Angew. Chem. Int. Ed., 2017, 56: 6937.
CrossRef Google scholar
[[67]]
Li Y, Liu X, Zheng L, Shang J, Wan X, Hu R, Guo X, Hong S, Shui J J. Mater. Chem. A, 2019, 7: 26147.
CrossRef Google scholar
[[68]]
Zhang Y-X, Zhang S, Huang H, Liu X, Li B, Lee Y, Wang X, Bai Y, Sun M, Wu Y, Gong S, Liu X, Zhuang Z, Tan T, Niu Z J. Am. Chem. Soc., 2023, 145: 4819.
CrossRef Google scholar
[[69]]
Xie Y, Chen X, Sun K, Zhang J, Lai W-H, Liu H, Wang G Angew. Chem. Int. Ed., 2023, 135: e202301833.
CrossRef Google scholar
[[70]]
Ling T, Jaroniec M, Qiao S-Z Adv. Mater., 2020, 32: 2001866.
CrossRef Google scholar
[[71]]
Qian Y, An T, Birgersson K E, Liu Z, Zhao D Small, 2018, 14: 1704169.
CrossRef Google scholar
[[72]]
Yan J, Zheng X, Wei C, Sun Z, Zeng K, Shen L, Sun J, Rümmeli M H, Yang R Carbon, 2021, 171: 320.
CrossRef Google scholar
[[73]]
Mosallanezhad A, Wei C, Ahmadian Koudakan P, Fang Y, Niu S, Bian Z, Liu B, Huang T, Pan H, Wang G Appl. Catal., B, 2022, 315: 121534.
CrossRef Google scholar
[[74]]
Feng J, Xu D, Yang F, Chen J, Wu C, Yin Y Angew. Chem. Int. Ed., 2021, 60: 16958.
CrossRef Google scholar
[[75]]
He M-Q, Ai Y, Hu W, Guan L, Ding M, Liang Q Adv. Mater., 2023, 35: 2211915.
CrossRef Google scholar
[[76]]
Lin C, Li J-L, Li X, Yang S, Luo W, Zhang Y, Kim S-H, Kim DH, Shinde S S, Li Y-F, Liu Z-P, Jiang Z, Lee J-H Nat. Catal., 2021, 4: 1012.
CrossRef Google scholar
[[77]]
Shan J, Ye C, Chen S, Sun T, Jiao Y, Liu L, Zhu C, Song L, Han Y, Jaroniec M, Zhu Y, Zheng Y, Qiao S-Z J. Am. Chem. Soc., 2021, 143: 5201.
CrossRef Google scholar
[[78]]
Wang L, Wang J, Gao X, Chen C, Da Y, Wang S, Yang J, Wang Z, Song J, Yao T, Zhou W, Zhou H, Wu Y J. Am. Chem. Soc., 2022, 144: 15999.
CrossRef Google scholar
[[79]]
Qi K, Cui X, Gu L, Yu S, Fan X, Luo M, Xu S, Li N, Zheng L, Zhang Q, Ma J, Gong Y, Lv F, Wang K, Huang H, Zhang W, Guo S, Zheng W, Liu P Nat. Commun., 2019, 10: 5231.
CrossRef Google scholar
[[80]]
Gao Q, Yao B, Pillai H S, Zang W, Han X, Liu Y, Yu S-W, Yan Z, Min B, Zhang S, Zhou H, Ma L, Xin H, He Q, Zhu H Nat. Synth., 2023, 2: 624.
CrossRef Google scholar
[[81]]
Liu L, Hu J, Ma Z, Zhu Z, He B, Chen F, Lu Y, Xu R, Zhang Y, Ma T, Sui M, Huang H Nat. Commun., 2024, 15: 305.
CrossRef Google scholar
[[82]]
Lin Y, Zhou M, Tai X, Li H, Han X, Yu J Matter, 2021, 4: 2309.
CrossRef Google scholar
[[83]]
Lin F, Liu Y, Yu X, Cheng L, Singer A, Shpyrko O G, Xin H L, Tamura N, Tian C, Weng T-C, Yang X-Q, Meng Y S, Nordlund D, Yang W, Doeff M M Chem. Rev., 2017, 117: 13123.
CrossRef Google scholar
[[84]]
Liu J Chin. J. Catal., 2017, 38: 1460.
CrossRef Google scholar
[[85]]
Qiao Y, Hu R, Gu Y, Tang F-J, Luo S-H, Zhang H-T, Tian J-H, Cheng J, Tian Z-Q Scientia Sinica Chimica, 2024, 54: 338.
CrossRef Google scholar
[[86]]
Wang L G, Wu J B, Wang S W, Liu H, Wang Y, Wang D S Nano Res., 2024, 17: 3261.
CrossRef Google scholar
[[87]]
Finzel J, Sanroman Gutierrez K M, Hoffman A S, Resasco J, Christopher P, Bare S R ACS Catal., 2023, 13: 6462.
CrossRef Google scholar
[[88]]
Wang H Z, Yang T, Wang J Y, Zhou Z, Pei Z X, Zhao S L Chem, 2024, 10: 48.
CrossRef Google scholar
[[89]]
Tian H, Song A, Zhang P, Sun K, Wang J, Sun B, Fan Q, Shao G, Chen C, Liu H, Li Y, Wang G Adv. Mater., 2023, 35: 2210714.
CrossRef Google scholar
[[90]]
Hammer B, Jacobsen K W, Nørskov J K Phys. Rev. Lett., 1993, 70: 3971.
CrossRef Google scholar
[[91]]
Hammer B, Norskov J K Nature, 1995, 376: 238.
CrossRef Google scholar
[[92]]
Kitchin J R, Nørskov J K, Barteau M A, Chen J G Phys. Rev. Lett., 2004, 120: 10240
[[93]]
Jiao S, Fu X, Huang H Adv. Funct. Mater., 2022, 32: 2107651.
CrossRef Google scholar
[[94]]
Li J, Sougrati M T, Zitolo A, Ablett J M, Oguz I C, Mineva T, Matanovic I, Atanassov P, Huang Y, Zenyuk I, Di Cicco A, Kumar K, Dubau L, Maillard F, Dražić G, Jaouen F Nat. Catal., 2021, 4: 10.
CrossRef Google scholar
[[95]]
Zeng Y, Li C, Li B, Liang J, Zachman M J, Cullen D A, Hermann R P, Alp E E, Lavina B, Karakalos S, Lucero M, Zhang B, Wang M, Feng Z, Wang G, Xie J, Myers D J, Dodelet J-P, Wu G Nat. Catal., 2023, 6: 1215.
CrossRef Google scholar
[[96]]
Bai J, Zhao T, Xu M, Mei B, Yang L, Shi Z, Zhu S, Wang Y, Jiang Z, Zhao J, Ge J, Xiao M, Liu C, Xing W Nat. Commun., 2024, 15: 4219.
CrossRef Google scholar
[[97]]
Ding S, Barr J A, Shi Q, Zeng Y, Tieu P, Lyu Z, Fang L, Li T, Pan X, Beckman S P, Du D, Lin H, Li J-C, Wu G, Lin Y ACS Nano, 2022, 16: 15165.
CrossRef Google scholar
[[98]]
Wang Y-C, Lai Y-J, Song L, Zhou Z-Y, Liu J-G, Wang Q, Yang X-D, Chen C, Shi W, Zheng Y-P, Rauf M, Sun S-G Angew. Chem. Int. Ed., 2015, 54: 9907.
CrossRef Google scholar
[[99]]
Li Q, Chen W, Xiao H, Gong Y, Li Z, Zheng L, Zheng X, Yan W, Cheong W-C, Shen R, Fu N, Gu L, Zhuang Z, Chen C, Wang D, Peng Q, Li J, Li Y Adv. Mater., 2018, 30: 1800588.
CrossRef Google scholar
[[100]]
Yuan K, Lützenkirchen-Hecht D, Li L, Shuai L, Li Y, Cao R, Qiu M, Zhuang X, Leung M K H, Chen Y, Scherf U J. Am. Chem. Soc., 2020, 142: 2404.
CrossRef Google scholar
[[101]]
Huang W, Hai B, Su G, Mao H, Li J Mater. Lett., 2024, 360: 135976.
CrossRef Google scholar
[[102]]
Wang Q, Hu X, Cui K, Wu Y, Ma G, Lei Z, Ren S Inorg. Chem. Front., 2024, 11: 5666.
CrossRef Google scholar
[[103]]
Holby E F, Taylor C D Scientific Reports, 2015, 5: 9286.
CrossRef Google scholar
[[104]]
Chen K, Liu K, An P, Li H, Lin Y, Hu J, Jia C, Fu J, Li H, Liu H, Lin Z, Li W, Li J, Lu Y-R, Chan T-S, Zhang N, Liu M Nat. Commun., 2020, 11: 4173.
CrossRef Google scholar
[[105]]
Peng L, Yang J, Yang Y, Qian F, Wang Q, Sun D, Shang L, Zhang T, Waterhouse G I N Adv. Mater., 2022, 34: 2202544.
CrossRef Google scholar
[[106]]
Hu L, Dai C, Chen L, Zhu Y, Hao Y, Zhang Q, Gu L, Feng X, Yuan S, Wang L, Wang B Angew. Chem. Int. Ed., 2021, 60: 27324.
CrossRef Google scholar
[[107]]
Zhu X, Zhang D, Chen C-J, Zhang Q, Liu R-S, Xia Z, Dai L, Amal R, Lu X Nano Energy, 2020, 71: 104597.
CrossRef Google scholar
[[108]]
Cui T, Wang Y-P, Ye T, Wu J, Chen Z, Li J, Lei Y, Wang D, Li Y Angew. Chem. Int. Ed., 2022, 61: e202115219.
CrossRef Google scholar
[[109]]
Zhu P, Xiong X, Wang X, Ye C, Li J, Sun W, Sun X, Jiang J, Zhuang Z, Wang D, Li Y Nano Lett., 2022, 22: 9507.
CrossRef Google scholar
[[110]]
Zhang S, Wu J H, Zheng M T, Jin X, Shen Z H, Li Z H, Wang Y J, Wang Q, Wang X B, Wei H, Zhang J W, Wang P, Zhang S Q, Yu L Y, Dong L F, Zhu Q S, Zhang H G, Lu J Nat. Commun., 2023, 14: 3634.
CrossRef Google scholar
[[111]]
Sheng X, Mei Z, Jing Q, Zou X, Wang L, Xu Q, Guo H Small, 2024, 20: 2305390.
CrossRef Google scholar
[[112]]
Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y J. Am. Chem. Soc., 2017, 139: 17281.
CrossRef Google scholar
[[113]]
Zhao L, Zhang Y, Huang L-B, Liu X-Z, Zhang Q-H, He C, Wu Z-Y, Zhang L-J, Wu J, Yang W, Gu L, Hu J-S, Wan L-J Nat. Commun., 2019, 10: 1278.
CrossRef Google scholar
[[114]]
Zhou Y, Tao X, Chen G, Lu R, Wang D, Chen M-X, Jin E, Yang J, Liang H-W, Zhao Y, Feng X, Narita A, Müllen K Nat. Commun., 2020, 11: 5892.
CrossRef Google scholar
[[115]]
Wang Y, Li C, Han X, Bai J, Wang X, Zheng L, Hong C, Li Z, Bai J, Leng K, Lin Y, Qu Y Nat. Commun., 2024, 15: 5675.
CrossRef Google scholar
[[116]]
Yang H, Shang L, Zhang Q, Shi R, Waterhouse G I N, Gu L, Zhang T Nat. Commun., 2019, 10: 4585.
CrossRef Google scholar
[[117]]
Mehmood A, Gong M, Jaouen F, Roy A, Zitolo A, Khan A, Sougrati M-T, Primbs M, Bonastre A M, Fongalland D, Drazic G, Strasser P, Kucernak A Nat. Catal., 2022, 5: 311.
CrossRef Google scholar
[[118]]
Hai X, Xi S, Mitchell S, Harrath K, Xu H, Akl D F, Kong D, Li J, Li Z, Sun T, Yang H, Cui Y, Su C, Zhao X, Li J, Pérez-Ramírez J, Lu J Nat. Nanotechnol., 2022, 17: 174.
CrossRef Google scholar
[[119]]
Chen H, Liang X, Liu Y, Ai X, Asefa T, Zou X Adv. Mater., 2020, 32: 2002435.
CrossRef Google scholar
[[120]]
Yang D-H, Tao Y, Ding X, Han B-H Chem. Soc. Rev., 2022, 51: 761.
CrossRef Google scholar
[[121]]
Wei Q, Xiong F, Tan S, Huang L, Lan E H, Dunn B, Mai L Adv. Mater., 2017, 29: 1602300.
CrossRef Google scholar
[[122]]
Wan X, Liu X, Li Y, Yu R, Zheng L, Yan W, Wang H, Xu M, Shui J Nat. Catal., 2019, 2: 259.
CrossRef Google scholar
[[123]]
Huang J Curr. Opin. Electrochem., 2022, 33: 100938.
CrossRef Google scholar
[[124]]
Li P, Jiang Y, Hu Y, Men Y, Liu Y, Cai W, Chen S Nat. Catal., 2022, 5: 900.
CrossRef Google scholar
[[125]]
Li P, Jiao Y, Ruan Y, Fei H, Men Y, Guo C, Wu Y, Chen S Nat. Commun., 2023, 14: 6936.
CrossRef Google scholar
[[126]]
Li C-Y, Le J-B, Wang Y-H, Chen S, Yang Z-L, Li J-F, Cheng J, Tian Z-Q Nat. Mater., 2019, 18: 697.
CrossRef Google scholar
[[127]]
Sun K, Wu X, Zhuang Z, Liu L, Fang J, Zeng L, Ma J, Liu S, Li J, Dai R, Tan X, Yu K, Liu D, Cheong W-C, Huang A, Liu Y, Pan Y, Xiao H, Chen C Nat. Commun., 2022, 13: 6260.
CrossRef Google scholar
[[128]]
Yin S, Chen L, Yang J, Cheng X, Zeng H, Hong Y, Huang H, Kuai X, Lin Y, Huang R, Jiang Y, Sun S Nat. Commun., 2024, 15: 7489.
CrossRef Google scholar
[[129]]
Liang S, Hao C, Shi Y ChemCatChem, 2015, 7: 2559.
CrossRef Google scholar
[[130]]
Chen F, Jiang X, Zhang L, Lang R, Qiao B Chin. J. Catal., 2018, 39: 893.
CrossRef Google scholar
[[131]]
Wang A, Li J, Zhang T Nat. Rev. Chem., 2018, 2: 65.
CrossRef Google scholar
[[132]]
Hannagan R T, Giannakakis G, Flytzani-Stephanopoulos M, Sykes E C H Chem. Rev., 2020, 120: 12044.
CrossRef Google scholar
[[133]]
Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T Chem. Rev., 2020, 120: 11986.
CrossRef Google scholar
[[134]]
Zhang Q, Guan J Adv. Funct. Mater., 2020, 30: 2000768.
CrossRef Google scholar
[[135]]
Guo Y, Wang M, Zhu Q, Xiao D, Ma D Nat. Catal., 2022, 5: 766.
CrossRef Google scholar
[[136]]
Shan J, Ye C, Jiang Y, Jaroniec M, Zheng Y, Qiao S-Z Science Advances, 2022, 8: eabo0762.
CrossRef Google scholar
[[137]]
Yuan L-J, Sui X-L, Pan H, Wang Z-B Renewables, 2023, 1: 514.
CrossRef Google scholar
[[138]]
Zhang L, Jin N, Yang Y, Miao X-Y, Wang H, Luo J, Han L Nano Micro Lett., 2023, 15: 228.
CrossRef Google scholar
[[139]]
Chen R, Chen S, Wang L, Wang D Adv. Mater., 2024, 36: 2304713.
CrossRef Google scholar
[[140]]
Han C., Zhang S., Zhang H., Dong Y., Yao P., Du Y., Song P., Gong X., Xu W., eScience, 2024, 100269.
[[141]]
Peng Y, Lu B, Chen S Adv. Mater., 2018, 30: 1801995.
CrossRef Google scholar
[[142]]
Gawande M B, Fornasiero P, Zbořil R ACS Catal., 2020, 10: 2231.
CrossRef Google scholar
[[143]]
Zhang J, Huang Q A, Wang J, Wang J, Zhang J J, Zhao Y F Chin. J. Catal., 2020, 41: 783.
CrossRef Google scholar
[[144]]
Liu K, Li J, Liu Y, Wang M, Cui H J. Energy Chem., 2023, 79: 515.
CrossRef Google scholar
[[145]]
Gao Y, Liu B, Wang D Adv. Mater., 2023, 35: 2209654.
CrossRef Google scholar
[[146]]
Liu S W, Li C Z, Zachman M J, Zeng Y C, Yu H R, Li B Y, Wang M Y, Braaten J, Liu J W, Meyer H M, Lucero M, Kropf A J, Alp E E, Gong Q, Shi Q R, Feng Z X, Xu H, Wang G F, Myers D J, Xie J, Cullen D A, Litster S, Wu G Nat. Energy, 2022, 7: 652.
CrossRef Google scholar
[[147]]
Li R Z, Wang D S Nano Res., 2022, 15: 6888.
CrossRef Google scholar
[[148]]
Xi J, Jung H S, Xu Y, Xiao F, Bae J W, Wang S Adv. Funct. Mater., 2021, 31: 2008318.
CrossRef Google scholar
[[149]]
Ying Y, Luo X, Qiao J, Huang H Adv. Funct. Mater., 2021, 31: 2007423.
CrossRef Google scholar
[[150]]
Wang L, Xu Z, Kuo C-H, Peng J, Hu F, Li L, Chen H-Y, Wang J, Peng S Angew. Chem. Int. Ed., 2023, 62: e202311937.
CrossRef Google scholar
[[151]]
Shang H S, Liu D Nano Res., 2023, 16: 6477.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/