Porphyrin-based Covalent Organic Polymers with Bimetallic Active Sites for Boosting Photocatalytic CO2 Cycloaddition

Shengrong Yan , Lan Zhang , Songhu Shi , Yanyan Ren , Wenhao Liu , Yujie Li , Fang Duan , Shuanglong Lu , Mingliang Du , Mingqing Chen

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (1) : 121 -130.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (1) : 121 -130. DOI: 10.1007/s40242-025-4202-1
Article

Porphyrin-based Covalent Organic Polymers with Bimetallic Active Sites for Boosting Photocatalytic CO2 Cycloaddition

Author information +
History +
PDF

Abstract

The photocatalytic CO2 cycloaddition to prepare high value-added chemicals, such as cyclic carbonates (CCs) under mild conditions is an effective strategy to realize carbon neutrality. Herein, through a three-step reaction, the porphyrin-based covalent organic polymer with bimetallic active sites (Fe-COP-Zr) is successfully obtained by coordinating Fe2+ and Zr4+ with porphyrin and bipyridine (Bpy), respectively. Owing to excellent photosensitivity of porphyrin moieties, Fe-COP-Zr exhibits outstanding visible light absorption, which is very important for the production of photogenerated carriers. Consequently, Fe-COP-Zr shows high photocatalytic performance towards CO2 cycloaddition with a yield of 12.1 mmol/h, which is 6 times higher than that of pure covalent organic polymer (COP) and 3 times higher than that of monometallic Fe-COP. The reason for this excellent photocatalytic CO2 cycloaddition performance may be ascribed to the synergistic effect of Fe and Zr sites. The photogenerated electrons are easily injected into epichlorohydrin (ECH) through Fe—O bonds to form affluent electron transition state, and interact with Zr4+ as Lewis acid sites for the ring-opening of ECH, which is the rate-determining step for the visible light boosted chemical fixation of CO2 into CCs. This work might provide some insights for design and preparation of COPs with multiple active sites to modulate their photocatalytic activities.

Keywords

Photocatalytic CO2 cycloaddition / Cyclic carbonate / Covalent organic polymer / Bimetallic active site

Cite this article

Download citation ▾
Shengrong Yan, Lan Zhang, Songhu Shi, Yanyan Ren, Wenhao Liu, Yujie Li, Fang Duan, Shuanglong Lu, Mingliang Du, Mingqing Chen. Porphyrin-based Covalent Organic Polymers with Bimetallic Active Sites for Boosting Photocatalytic CO2 Cycloaddition. Chemical Research in Chinese Universities, 2025, 41(1): 121-130 DOI:10.1007/s40242-025-4202-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ShenR, LiangG, HaoL, ZhangP, LiX Adv. Mater., 2023, 35: 2303649

[2]

LiB, OuH, ChenS, SuY, WangD Chem. Res. Chinese Universities, 2023, 39: 527

[3]

XiaoY, YaoC, SuC, LiuB EcoEnergy, 2023, 1: 60

[4]

YiJ, LiQ, ChiS, HuangY, CaoR Chem. Res. Chinese Universities, 2022, 38: 141

[5]

HeH, ZouZ, HuaW, YueY, GaoZ Chem. Res. Chinese Universities, 2023, 39: 1064

[6]

ChenZ, YeY, PanX, BaoX Chem. Res. Chinese Universities, 2024, 40: 1004

[7]

AminnajiM, QureshiM F, DashtiH, HaseA, MosalanejadA, JahanbakhshA, BabaeiM, AmiriA, Maroto-ValerM Energy, 2024, 300: 131579

[8]

ZhangH, ZhouZ, YinY, XuH, WangY, YangK, ZhangZ, WangJ, HeX EcoEnergy, 2023, 1: 217

[9]

WangK, LiH, YangL, LuoY, YaoZ Surf. Interfaces, 2024, 45: 103845

[10]

RadfarS, MahmoudiS, MoftakhariH, MeckleyT, BilskieM V, ColliniR, AlizadK, CherryJ A, MoradkhaniH Sci. Total Environ., 2024, 938: 173529

[11]

SeddonN Science, 2022, 376: 1410

[12]

VicarelliM, Sudmeier-RieuxK, AlsadadiA, ShresthaA, SchützeS, KangM M, LeueM, WasielewskiD, MysiakJ Sci. Total Environ., 2024, 947: 174524

[13]

LiN, ZhangQ, HanL, HuangJ, LuoX, LiX Int. J. Hydrogen Energy, 2023, 48: 7004

[14]

LiX, XiongJ, GaoX, HuangJ, FengZ, ChenZ, ZhuY J. Alloy. Comp., 2019, 802: 196

[15]

DengF, PengJ, LiX, LuoX, GangulyP, PillaiS C, RenB, DingL, DionysiouD D J. Clean. Prod., 2023, 416: 137957

[16]

XiongX, ZhaoY, ShiR, YinW, ZhaoY, WaterhouseG I N, ZhangT Sci. Bull., 2020, 65: 987

[17]

ZhaoY, ChenG, BianT, ZhouC, WaterhouseG I N, WuL, TungC, SmithL J, O’HareD, ZhangT Adv. Mater., 2015, 27: 7824

[18]

ZhangH, ZhaiG, LeiL, ZhangC, LiuY, WangZ, ChengH, ZhengZ, WangP, DaiY, HuangB J. Colloid Interface Sci., 2022, 625: 33

[19]

WuY, YuX, DuY, XiaL, GuoQ, ZhangK, ZhangW, LiuS, PengY, LiZ, YangX Appl. Catal. B: Environ., 2023, 331: 122732

[20]

Li L., Liu W., Ying H., He X., Shang S., Zhang P., Zhang X., Liu S., Wang H., Xie Y., CCS Chem., 2024.

[21]

DengM, XuZ, ZhaoY, ChenX, LiP, GaoW, LiJ, ZhangX Surf. Interfaces, 2024, 52: 104864

[22]

PrajapatiP K, KumarA, JainS L ACS Sustainable Chem. Eng., 2018, 6: 7799

[23]

MekhemerI M A, ElewaA M, ElsenetyM M, SamyM M, MohamedM G, MusaA F, HuangT-F, WeiT-C, KuoS-W, ChenB-H, YangS-D, ChouH-H Chem. Eng. J., 2024, 497: 154280

[24]

LiJ, ZhangZ, JiaJ, LiuX Chem. Res. Chinese Universities, 2022, 38: 275

[25]

AnW, XuX, ZhengS, DuY, OuyangJ, XieL, RenY, HeM, FanC, PanZ, LiY ACS Catal., 2023, 13: 9845

[26]

QiY, LiS, BaoT, SheP, RaoH, QinJ Appl. Catal. B: Environ. Energy, 2024, 357: 124299

[27]

DongP, XuX, WuT, LuoR, KongW, XuZ, YuanS, ZhouJ, LeiJ Angew. Chem. Int. Ed., 2024, 63: e202405313

[28]

TakedaN, InoueS Makromol. Chem., 1978, 179: 1377

[29]

LuM, ZhangS, YangM, LiuY, LiaoJ, HuangP, ZhangM, LiS, SuZ, LanY Angew. Chem. Int. Ed., 2023, 62: e202307632

[30]

XueQ, WangZ, HanS, LiuY, DouX, LiY, ZhuH, YuanX J. Mater. Chem. A, 2022, 10: 8371

[31]

BuR, LuY, ZhangB Chem. Res. Chinese Universities, 2022, 38: 1151

[32]

ZhangX, ZhangH, QiuB, ZhuD, ZhangS, BianY, WangJ, LiD, WangS, MaiW, ChenJ, LiT Fuel, 2023, 331: 125828

[33]

ZhangX, WangJ, BianY, LvH, QiuB, ZhangY, QinR, ZhuD, ZhangS, LiD, WangS, MaiW, LiY, LiT J. CO2 Util., 2022, 58: 101924

[34]

LuoR, YangY, ChenK, LiuX, ChenM, XuW, LiuB, JiH, FangY J. Mater. Chem. A, 2021, 9: 20941

[35]

LuoR, ChenM, ZhouF, ZhanJ, DengQ, YuY, ZhangY, XuW, FangY J. Mater. Chem. A, 2021, 9: 25731

[36]

LiuL, JayakumarS, ChenJ, TaoL, LiH, YangQ, LiC ACS Appl. Mater. Interfaces, 2021, 13: 29522

[37]

ShangS, ShaoW, LuoX, ZuoM, WangH, ZhangX, XieY Research, 2022, 2022: 9878054

[38]

DuanF, ShengJ, ShiS, LiY, LiuW, LuS, ZhuH, DuM, ChenX, WangJ J. Colloid Interface Sci., 2024, 67: 620

[39]

ShiS, LiuW, LiY, LuS, ZhuH, DuM, ChenX, DuanF J. Colloid Interface Sci., 2024, 655: 611

[40]

LiZ, DengT, MaS, ZhangZ, WuG, WangJ, LiQ, XiaH, YangS, LiuX J. Am. Chem. Soc., 2023, 145: 8364

[41]

ZhuH, LuM, WangY, YaoS, ZhangM, KanY, LiuJ, ChenY, LiS, LanY Nat. Commun., 2020, 11: 497

[42]

FaD, TaoY, PanX, WangD, FengG, YuanJ, LuoQ, SongY, GaoX J, YangL, LeiS, HuW Angew. Chem. Int. Ed., 2022, 61: e202207845

[43]

LiS, MengS, ZouX, El-RozM, TelegeevI, ThiliO, LiuT X, ZhuG Micropor. Mesopor. Mat., 2019, 285: 195

[44]

KumarA, SamantaS, SrivastavaR ACS Appl. Nano Mater., 2021, 4: 6805

[45]

ZhaiG, LiuY, LeiL, WangJ, WangZ, ZhengZ, WangP, ChengH, DaiY, HuangB ACS Catal., 2021, 11: 1988

[46]

LiuX, QiR, LiS, LiuW, YuY, WangJ, WuS, DingK, YuY J. Am. Chem. Soc., 2022, 144: 23396

[47]

GuanM, LuN, ZhangX, WangQ, BaoJ, ChenG, YuH, LiH, XiaJ, GongX Carbon Energy, 2024, 6: e420

[48]

HuY, LiX, WangW, DengF, HanL, GaoX, FengZ, ChenZ, HuangJ, ZengF, DongF Chin. J. Struct. Chem., 2022, 41: 2206069

[49]

GuoZ, YangS, LiuM, XuQ, ZengG EcoEnergy, 2024, 2: 192

[50]

ZanZ, LiX, GaoX, HuangJ, LuoY, HanL Acta Phys.-Chim. Sin., 2023, 39: 2209016

[51]

WangR, LiT, GaoR, QinJ, LiM, GuoY, SongY Chem. Res. Chinese Universities, 2023, 39: 246

[52]

LiL, LvX, XueY, ShaoH, ZhengG, HanQ Angew. Chem. Int. Ed., 2024, 63: e202320218

[53]

WangC, ShiS, DuanF, LuS, ZhuH, DuM, ChenX, ChenM J. Mater. Chem. A, 2022, 10: 16524

[54]

WuC, TengZ, YangC, ChenF, YangH, WangL, XuH, LiuB, ZhengG, HanQ Adv. Mater., 2022, 34: 2110266

[55]

HeW, WenM, ShiL, WangR, LiF J. Solid State Chem., 2022, 309: 122965

[56]

YinM, WangL, TangS ACS Catal., 2023, 13: 13021

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/