Porphyrin-based Covalent Organic Polymers with Bimetallic Active Sites for Boosting Photocatalytic CO2 Cycloaddition

Shengrong Yan, Lan Zhang, Songhu Shi, Yanyan Ren, Wenhao Liu, Yujie Li, Fang Duan, Shuanglong Lu, Mingliang Du, Mingqing Chen

Chemical Research in Chinese Universities ›› 2025

Chemical Research in Chinese Universities ›› 2025 DOI: 10.1007/s40242-025-4202-1
Article

Porphyrin-based Covalent Organic Polymers with Bimetallic Active Sites for Boosting Photocatalytic CO2 Cycloaddition

Author information +
History +

Abstract

The photocatalytic CO2 cycloaddition to prepare high value-added chemicals, such as cyclic carbonates (CCs) under mild conditions is an effective strategy to realize carbon neutrality. Herein, through a three-step reaction, the porphyrin-based covalent organic polymer with bimetallic active sites (Fe-COP-Zr) is successfully obtained by coordinating Fe2+ and Zr4+ with porphyrin and bipyridine (Bpy), respectively. Owing to excellent photosensitivity of porphyrin moieties, Fe-COP-Zr exhibits outstanding visible light absorption, which is very important for the production of photogenerated carriers. Consequently, Fe-COP-Zr shows high photocatalytic performance towards CO2 cycloaddition with a yield of 12.1 mmol/h, which is 6 times higher than that of pure covalent organic polymer (COP) and 3 times higher than that of monometallic Fe-COP. The reason for this excellent photocatalytic CO2 cycloaddition performance may be ascribed to the synergistic effect of Fe and Zr sites. The photogenerated electrons are easily injected into epichlorohydrin (ECH) through Fe—O bonds to form affluent electron transition state, and interact with Zr4+ as Lewis acid sites for the ring-opening of ECH, which is the rate-determining step for the visible light boosted chemical fixation of CO2 into CCs. This work might provide some insights for design and preparation of COPs with multiple active sites to modulate their photocatalytic activities.

Cite this article

Download citation ▾
Shengrong Yan, Lan Zhang, Songhu Shi, Yanyan Ren, Wenhao Liu, Yujie Li, Fang Duan, Shuanglong Lu, Mingliang Du, Mingqing Chen. Porphyrin-based Covalent Organic Polymers with Bimetallic Active Sites for Boosting Photocatalytic CO2 Cycloaddition. Chemical Research in Chinese Universities, 2025 https://doi.org/10.1007/s40242-025-4202-1

References

[[1]]
Shen R, Liang G, Hao L, Zhang P, Li X Adv. Mater., 2023, 35: 2303649.
CrossRef Google scholar
[[2]]
Li B, Ou H, Chen S, Su Y, Wang D Chem. Res. Chinese Universities, 2023, 39: 527.
CrossRef Google scholar
[[3]]
Xiao Y, Yao C, Su C, Liu B EcoEnergy, 2023, 1: 60.
CrossRef Google scholar
[[4]]
Yi J, Li Q, Chi S, Huang Y, Cao R Chem. Res. Chinese Universities, 2022, 38: 141.
CrossRef Google scholar
[[5]]
He H, Zou Z, Hua W, Yue Y, Gao Z Chem. Res. Chinese Universities, 2023, 39: 1064.
CrossRef Google scholar
[[6]]
Chen Z, Ye Y, Pan X, Bao X Chem. Res. Chinese Universities, 2024, 40: 1004.
CrossRef Google scholar
[[7]]
Aminnaji M, Qureshi M F, Dashti H, Hase A, Mosalanejad A, Jahanbakhsh A, Babaei M, Amiri A, Maroto-Valer M Energy, 2024, 300: 131579.
CrossRef Google scholar
[[8]]
Zhang H, Zhou Z, Yin Y, Xu H, Wang Y, Yang K, Zhang Z, Wang J, He X EcoEnergy, 2023, 1: 217.
CrossRef Google scholar
[[9]]
Wang K, Li H, Yang L, Luo Y, Yao Z Surf. Interfaces, 2024, 45: 103845.
CrossRef Google scholar
[[10]]
Radfar S, Mahmoudi S, Moftakhari H, Meckley T, Bilskie M V, Collini R, Alizad K, Cherry J A, Moradkhani H Sci. Total Environ., 2024, 938: 173529.
CrossRef Google scholar
[[11]]
Seddon N Science, 2022, 376: 1410.
CrossRef Google scholar
[[12]]
Vicarelli M, Sudmeier-Rieux K, Alsadadi A, Shrestha A, Schütze S, Kang M M, Leue M, Wasielewski D, Mysiak J Sci. Total Environ., 2024, 947: 174524.
CrossRef Google scholar
[[13]]
Li N, Zhang Q, Han L, Huang J, Luo X, Li X Int. J. Hydrogen Energy, 2023, 48: 7004.
CrossRef Google scholar
[[14]]
Li X, Xiong J, Gao X, Huang J, Feng Z, Chen Z, Zhu Y J. Alloy. Comp., 2019, 802: 196.
CrossRef Google scholar
[[15]]
Deng F, Peng J, Li X, Luo X, Ganguly P, Pillai S C, Ren B, Ding L, Dionysiou D D J. Clean. Prod., 2023, 416: 137957.
CrossRef Google scholar
[[16]]
Xiong X, Zhao Y, Shi R, Yin W, Zhao Y, Waterhouse G I N, Zhang T Sci. Bull., 2020, 65: 987.
CrossRef Google scholar
[[17]]
Zhao Y, Chen G, Bian T, Zhou C, Waterhouse G I N, Wu L, Tung C, Smith L J, O’Hare D, Zhang T Adv. Mater., 2015, 27: 7824.
CrossRef Google scholar
[[18]]
Zhang H, Zhai G, Lei L, Zhang C, Liu Y, Wang Z, Cheng H, Zheng Z, Wang P, Dai Y, Huang B J. Colloid Interface Sci., 2022, 625: 33.
CrossRef Google scholar
[[19]]
Wu Y, Yu X, Du Y, Xia L, Guo Q, Zhang K, Zhang W, Liu S, Peng Y, Li Z, Yang X Appl. Catal. B: Environ., 2023, 331: 122732.
CrossRef Google scholar
[[20]]
Li L., Liu W., Ying H., He X., Shang S., Zhang P., Zhang X., Liu S., Wang H., Xie Y., CCS Chem., 2024.
[[21]]
Deng M, Xu Z, Zhao Y, Chen X, Li P, Gao W, Li J, Zhang X Surf. Interfaces, 2024, 52: 104864.
CrossRef Google scholar
[[22]]
Prajapati P K, Kumar A, Jain S L ACS Sustainable Chem. Eng., 2018, 6: 7799.
CrossRef Google scholar
[[23]]
Mekhemer I M A, Elewa A M, Elsenety M M, Samy M M, Mohamed M G, Musa A F, Huang T-F, Wei T-C, Kuo S-W, Chen B-H, Yang S-D, Chou H-H Chem. Eng. J., 2024, 497: 154280.
CrossRef Google scholar
[[24]]
Li J, Zhang Z, Jia J, Liu X Chem. Res. Chinese Universities, 2022, 38: 275.
CrossRef Google scholar
[[25]]
An W, Xu X, Zheng S, Du Y, Ouyang J, Xie L, Ren Y, He M, Fan C, Pan Z, Li Y ACS Catal., 2023, 13: 9845.
CrossRef Google scholar
[[26]]
Qi Y, Li S, Bao T, She P, Rao H, Qin J Appl. Catal. B: Environ. Energy, 2024, 357: 124299.
CrossRef Google scholar
[[27]]
Dong P, Xu X, Wu T, Luo R, Kong W, Xu Z, Yuan S, Zhou J, Lei J Angew. Chem. Int. Ed., 2024, 63: e202405313.
CrossRef Google scholar
[[28]]
Takeda N, Inoue S Makromol. Chem., 1978, 179: 1377.
CrossRef Google scholar
[[29]]
Lu M, Zhang S, Yang M, Liu Y, Liao J, Huang P, Zhang M, Li S, Su Z, Lan Y Angew. Chem. Int. Ed., 2023, 62: e202307632.
CrossRef Google scholar
[[30]]
Xue Q, Wang Z, Han S, Liu Y, Dou X, Li Y, Zhu H, Yuan X J. Mater. Chem. A, 2022, 10: 8371.
CrossRef Google scholar
[[31]]
Bu R, Lu Y, Zhang B Chem. Res. Chinese Universities, 2022, 38: 1151.
CrossRef Google scholar
[[32]]
Zhang X, Zhang H, Qiu B, Zhu D, Zhang S, Bian Y, Wang J, Li D, Wang S, Mai W, Chen J, Li T Fuel, 2023, 331: 125828.
CrossRef Google scholar
[[33]]
Zhang X, Wang J, Bian Y, Lv H, Qiu B, Zhang Y, Qin R, Zhu D, Zhang S, Li D, Wang S, Mai W, Li Y, Li T J. CO2 Util., 2022, 58: 101924.
CrossRef Google scholar
[[34]]
Luo R, Yang Y, Chen K, Liu X, Chen M, Xu W, Liu B, Ji H, Fang Y J. Mater. Chem. A, 2021, 9: 20941.
CrossRef Google scholar
[[35]]
Luo R, Chen M, Zhou F, Zhan J, Deng Q, Yu Y, Zhang Y, Xu W, Fang Y J. Mater. Chem. A, 2021, 9: 25731.
CrossRef Google scholar
[[36]]
Liu L, Jayakumar S, Chen J, Tao L, Li H, Yang Q, Li C ACS Appl. Mater. Interfaces, 2021, 13: 29522.
CrossRef Google scholar
[[37]]
Shang S, Shao W, Luo X, Zuo M, Wang H, Zhang X, Xie Y Research, 2022, 2022: 9878054.
CrossRef Google scholar
[[38]]
Duan F, Sheng J, Shi S, Li Y, Liu W, Lu S, Zhu H, Du M, Chen X, Wang J J. Colloid Interface Sci., 2024, 67: 620.
CrossRef Google scholar
[[39]]
Shi S, Liu W, Li Y, Lu S, Zhu H, Du M, Chen X, Duan F J. Colloid Interface Sci., 2024, 655: 611.
CrossRef Google scholar
[[40]]
Li Z, Deng T, Ma S, Zhang Z, Wu G, Wang J, Li Q, Xia H, Yang S, Liu X J. Am. Chem. Soc., 2023, 145: 8364.
CrossRef Google scholar
[[41]]
Zhu H, Lu M, Wang Y, Yao S, Zhang M, Kan Y, Liu J, Chen Y, Li S, Lan Y Nat. Commun., 2020, 11: 497.
CrossRef Google scholar
[[42]]
Fa D, Tao Y, Pan X, Wang D, Feng G, Yuan J, Luo Q, Song Y, Gao X J, Yang L, Lei S, Hu W Angew. Chem. Int. Ed., 2022, 61: e202207845.
CrossRef Google scholar
[[43]]
Li S, Meng S, Zou X, El-Roz M, Telegeev I, Thili O, Liu T X, Zhu G Micropor. Mesopor. Mat., 2019, 285: 195.
CrossRef Google scholar
[[44]]
Kumar A, Samanta S, Srivastava R ACS Appl. Nano Mater., 2021, 4: 6805.
CrossRef Google scholar
[[45]]
Zhai G, Liu Y, Lei L, Wang J, Wang Z, Zheng Z, Wang P, Cheng H, Dai Y, Huang B ACS Catal., 2021, 11: 1988.
CrossRef Google scholar
[[46]]
Liu X, Qi R, Li S, Liu W, Yu Y, Wang J, Wu S, Ding K, Yu Y J. Am. Chem. Soc., 2022, 144: 23396.
CrossRef Google scholar
[[47]]
Guan M, Lu N, Zhang X, Wang Q, Bao J, Chen G, Yu H, Li H, Xia J, Gong X Carbon Energy, 2024, 6: e420.
CrossRef Google scholar
[[48]]
Hu Y, Li X, Wang W, Deng F, Han L, Gao X, Feng Z, Chen Z, Huang J, Zeng F, Dong F Chin. J. Struct. Chem., 2022, 41: 2206069
[[49]]
Guo Z, Yang S, Liu M, Xu Q, Zeng G EcoEnergy, 2024, 2: 192.
CrossRef Google scholar
[[50]]
Zan Z, Li X, Gao X, Huang J, Luo Y, Han L Acta Phys.-Chim. Sin., 2023, 39: 2209016
[[51]]
Wang R, Li T, Gao R, Qin J, Li M, Guo Y, Song Y Chem. Res. Chinese Universities, 2023, 39: 246.
CrossRef Google scholar
[[52]]
Li L, Lv X, Xue Y, Shao H, Zheng G, Han Q Angew. Chem. Int. Ed., 2024, 63: e202320218.
CrossRef Google scholar
[[53]]
Wang C, Shi S, Duan F, Lu S, Zhu H, Du M, Chen X, Chen M J. Mater. Chem. A, 2022, 10: 16524.
CrossRef Google scholar
[[54]]
Wu C, Teng Z, Yang C, Chen F, Yang H, Wang L, Xu H, Liu B, Zheng G, Han Q Adv. Mater., 2022, 34: 2110266.
CrossRef Google scholar
[[55]]
He W, Wen M, Shi L, Wang R, Li F J. Solid State Chem., 2022, 309: 122965.
CrossRef Google scholar
[[56]]
Yin M, Wang L, Tang S ACS Catal., 2023, 13: 13021.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/