Linkage Conversion in Pyrene-based Covalent Organic Frameworks for Promoted Photocatalytic Hydrogen Peroxide Generation in a Biphasic System

Hong Yu, Xuening Zhang, Qian Chen, Pan-Ke Zhou, Fei Xu, Hongqiang Wang, Xiong Chen

Chemical Research in Chinese Universities ›› 2024

Chemical Research in Chinese Universities All Journals
Chemical Research in Chinese Universities ›› 2024 DOI: 10.1007/s40242-024-4213-3
Article

Linkage Conversion in Pyrene-based Covalent Organic Frameworks for Promoted Photocatalytic Hydrogen Peroxide Generation in a Biphasic System

Author information +
History +

Abstract

The photocatalytic synthesis of hydrogen peroxide (H2O2) from water and oxygen using metal-free catalysts represents a promising approach to H2O2 production, offering advantages in terms of reduced environmental impact, energy efficiency, and enhanced safety. Covalent organic frameworks (COFs) with imine linkages have emerged as a promising class of materials for this purpose, given their structural and functional diversity. However, they often suffer from poor durability, inefficient photogenerated charge separation efficiency, and rapid recombination of photogenerated electron-hole pairs. To address these limitations, a linkage conversion strategy in COFs can be employed to improve both stability and photoactivity. Herein, we demonstrate the conversion of imine bonds into thiazole rings, thereby facilitating charge transfer and enhancing the photocatalytic stability of COFs. This structural modification enables the thiazole-linked COF to maintain stable photocatalysis over a 24-h period, achieving an H2O2 production rate of 57.1 µmol/h (per 10 mg). This rate is twice that of the pristine imine-linked COF and surpasses those of most metal-free photocatalysts. This investigation provides novel insights into the development of advanced COF-based photocatalysts for photocatalytic energy conversions.

Cite this article

Download citation ▾
Hong Yu, Xuening Zhang, Qian Chen, Pan-Ke Zhou, Fei Xu, Hongqiang Wang, Xiong Chen. Linkage Conversion in Pyrene-based Covalent Organic Frameworks for Promoted Photocatalytic Hydrogen Peroxide Generation in a Biphasic System. Chemical Research in Chinese Universities, 2024 https://doi.org/10.1007/s40242-024-4213-3
This is a preview of subscription content, contact us for subscripton.

References

[1]
TengZ, ZhangQ, YangH, KatoK, YangW, LuY-R, LiuS, WangC, YamakataA, SuC, LiuB, OhnoT. Nat. Catal., 2021, 4: 374
CrossRef Google scholar
[2]
LiuR, ChenY, YuH, PolozijM, GuoY, SumT C, HeineT, JiangD. Nat. Catal., 2024, 7: 195
CrossRef Google scholar
[3]
DongP, XuX, WuT, LuoR, KongW, XuZ, YuanS, ZhouJ, LeiJ. Angew. Chem. Int. Ed., 2024, 63: e202405313
CrossRef Google scholar
[4]
CiriminnaR, AlbaneseL, MeneguzzoF, PagliaroM. Chem. Sus. Chem., 2016, 9: 3374
CrossRef Google scholar
[5]
WangW, WangX, GaoM, LiZ, ZhouW. Coordin. Chem. Rev., 2024, 506: 215694
CrossRef Google scholar
[6]
HouH, ZengX, ZhangX. Angew. Chem. Int. Ed., 2020, 59: 17356
CrossRef Google scholar
[7]
SunJ, Sekhar JenaH, KrishnarajC, Singh RawatK, AbednatanziS, ChakrabortyJ, LaemontA, LiuW, ChenH, LiuY-Y, LeusK, VrielinckH, Van SpeybroeckV, Van Der VoortP. Angew. Chem. Int. Ed., 2023, 62: e202216719
CrossRef Google scholar
[8]
TanD, ZhuangR, ChenR, BanM, FengW, XuF, ChenX, WangQ. Adv. Funct. Mater., 2024, 34: 2311655
CrossRef Google scholar
[9]
ChenL, WangL, WanY, ZhangY, QiZ, WuX, XuH. Adv. Mater., 2020, 32: 1904433
CrossRef Google scholar
[10]
XieZ, ChenX, WangW, KeX, ZhangX, WangS, WuX, YuJ C, WangX. Angew. Chem. Int. Ed., 2024, 63: e202410179
[11]
ShiraishiY, KanazawaS, SuganoY, TsukamotoD, SakamotoH, IchikawaS, HiraiT. ACS Catal., 2014, 4: 774
CrossRef Google scholar
[12]
LiuL, GaoM-Y, YangH, WangX, LiX, CooperA I. J. Am. Chem. Soc., 2021, 143: 19287
CrossRef Google scholar
[13]
LanZ-A, WuM, FangZ, ChiX, ChenX, ZhangY, WangX. Angew. Chem. Int. Ed., 2021, 60: 16355
CrossRef Google scholar
[14]
ChengJ, WanS, CaoS. Angew. Chem. Int. Ed., 2023, 62: e202310476
CrossRef Google scholar
[15]
GaoP, WuC, WangS, ZhengG, HanQ. J. Colloid Interf. Sci., 2023, 650: 40
CrossRef Google scholar
[16]
SunR, HuX, YangX, GuoY, ShuC, YangX, GaoH, WangX, TanB. Chem. Eng. J., 2024, 490: 151332
CrossRef Google scholar
[17]
WangH, YangC, ChenF, ZhengG, HanQ. Angew. Chem. Int. Ed., 2022, 61: e202202328
CrossRef Google scholar
[18]
ZhaoW, YanP, LiB, BahriM, LiuL, ZhouX, ClowesR, BrowningN D, WuY, WardJ W, CooperA I. J. Am. Chem. Soc., 2022, 144: 9902
CrossRef Google scholar
[19]
LiuY, LiL, TanH, YeN, GuY, ZhaoS, ZhangS, LuoM, GuoS. J. Am. Chem. Soc., 2023, 145: 19877
CrossRef Google scholar
[20]
PanG, HouX, LiuZ, YangC, LongJ, HuangG, BiJ, YuY, LiL. ACS Catal., 2022, 12: 14911
CrossRef Google scholar
[21]
XuH, XiaS, LiC, LiY, XingW, JiangY, ChenX. Angew. Chem. Int. Ed., 2024, 63: e202405476
CrossRef Google scholar
[22]
HaoQ, TaoY, DingX, YangY, FengJ, WangR, ChenX, ChenG, LiX, YangH, HuX, TianJ, HanB, ZhuG, WangW, ZhangF, TanB, LiZ, WangD, WanL. Sci. China Chem., 2023, 66: 620
[23]
ChangJ-N, ShiJ-W, LiQ, LiS, WangY-R, ChenY, YuF, LiS-L, LanY-Q. Angew. Chem. Int. Ed., 2023, 62: e202303606
CrossRef Google scholar
[24]
Cheng J., Wu Y., Zhang W., Wang L., Wu X., Xu H., Adv. Mater., 2024, DOI: https://doi.org/10.1002/adma.202410247.
[25]
Chi X., Zhang Z., Li M., Jiao Y., Li X., Meng F., Xue B., Wu D., Zhang F., Angew. Chem. Int. Ed., 2024, DOI: https://doi.org/10.1002/anie.202418895.
[26]
Guo L., Gong L., Yang Y., Huang Z., Liu X., Luo F., Angew. Chem. Int. Ed., 2024, DOI: https://doi.org/10.1002/anie.202414658.
[27]
FengS, WangL, TianL, LiuY, HuK, XuH, WangH, HuaJ. Chem. Sci., 2024, 15: 11972
CrossRef Google scholar
[28]
Guo Y., Dong Y., Liu B., Ni B., Pan C., Zhang J., Zhao H., Wang G., Zhu Y., Adv. Funct. Mater., 2024, 2402920.
[29]
MundeA V, SankeD M, GhoshN G, BezboruahJ, RoyS, ZadeS S. J. Mater. Chem. A, 2024, 12: 18433
CrossRef Google scholar
[30]
ChengH, LvH, ChengJ, WangL, WuX, XuH. Adv. Mater., 2022, 34: 2107480
CrossRef Google scholar
[31]
LanZ-A, RenW, ChenX, ZhangY, WangX. Appl. Catal. B, 2019, 245: 596
CrossRef Google scholar
[32]
LiuS, GuoJ. Chem. Res. Chinese Universities, 2022, 38: 373
CrossRef Google scholar
[33]
LiJ, ZhangZ, JiaJ, LiuX. Chem. Res. Chinese Universities, 2022, 38: 275
CrossRef Google scholar
[34]
KrishnarajC, Sekhar JenaH, BourdaL, LaemontA, PachfuleP, RoeserJ, ChandranC V, BorgmansS, RoggeS M J, LeusK, StevensC V, MartensJ A, Van SpeybroeckV, BreynaertE, ThomasA, Van Der VoortP. J. Am. Chem. Soc., 2020, 142: 20107
CrossRef Google scholar
[35]
HouY, ZhouP, LiuF, LuY, TanH, LiZ, TongM, NiJ. Angew. Chem. Int. Ed., 2024, 63: e202318562
CrossRef Google scholar
[36]
Liu J.-C., Tuo C., Xiao W.-Y., Qi M.-Y., Yusran Y., Wang Z.-T., Li H., Guo C.-S., Song J.-L., Qiu S.-L., Xu Y.-J., Fang Q., Angew. Chem. Int. Ed., 2024, DOI: https://doi.org/10.1002/anie.202416240.
[37]
WuW, LiZ, LiuS, ZhangD, CaiB, LiangY, WuM, LiaoY, ZhaoX. Angew. Chem. Int. Ed., 2024, 63: e202404563
CrossRef Google scholar
[38]
KouM, WangY, XuY, YeL, HuangY, JiaB, LiH, RenJ, DengY, ChenJ, ZhouY, LeiK, WangL, LiuW, HuangH, MaT. Angew. Chem. Int. Ed., 2022, 61: e202200413
CrossRef Google scholar
[39]
GuoL, NiuY, RazzaqueS, TanB, JinS. ACS Catal., 2019, 9: 9438
CrossRef Google scholar
[40]
YuH, ZhangF, ChenQ, ZhouP-K, XingW, WangS, ZhangG, JiangY, ChenX. Angew. Chem. Int. Ed., 2024, 63: e202402297
CrossRef Google scholar
[41]
ChangJ-N, LiQ, ShiJ-W, ZhangM, ZhangL, LiS, ChenY, LiS-L, LanY-Q. Angew. Chem. Int. Ed., 2023, 62: e202218868
CrossRef Google scholar
[42]
ZhouT, WangL, HuangX, UnruangsriJ, ZhangH, WangR, SongQ, YangQ, LiW, WangC, TakahashiK, XuH, GuoJ. Nat. Commun., 2021, 12: 3934
CrossRef Google scholar
[43]
DasP, ChakrabortyG, RoeserJ, VoglS, RabeahJ, ThomasA. J. Am. Chem. Soc., 2023, 145: 2975
CrossRef Google scholar
[44]
WallerP J, AlFarajY S, DiercksC S, JarenwattananonN N, YaghiO M. J. Am. Chem. Soc., 2018, 140: 9099
CrossRef Google scholar
[45]
MouY, WuX, QinC, ChenJ, ZhaoY, JiangL, ZhangC, YuanX, Huixiang AngE, WangH. Angew. Chem. Int. Ed., 2023, 62: e202309480
CrossRef Google scholar
[46]
DengM, SunJ, LaemontA, LiuC, WangL, BourdaL, ChakrabortyJ, Van HeckeK, MorentR, De GeyterN, LeusK, ChenH, Van Der VoortP. Green Chem., 2023, 25: 3069
CrossRef Google scholar
[47]
LiuY, HanW-K, ChiW, MaoY, JiangY, YanX, GuZ-G. Appl. Catal. B, 2023, 331: 122691
CrossRef Google scholar
[48]
ChiX, ChenQ, LanZ-A, ZhangX, ChenX, WangX. Chem. Eur. J., 2023, 29: e202202734
CrossRef Google scholar
[49]
LuoZ, ChenX, HuY, ChenX, LinW, WuX, WangX. Angew. Chem. Int. Ed., 2023, 62: e202304875
CrossRef Google scholar
[50]
ChiX, LanZ-A, ChenQ, ZhangX, ChenX, ZhangG, WangX. Angew. Chem. Int. Ed., 2023, 62: e202303785
CrossRef Google scholar
[51]
LanZ-A, ZhangG, ChenX, ZhangY, ZhangK A I, WangX. Angew. Chem. Int. Ed., 2019, 58: 10236
CrossRef Google scholar
[52]
ChaiS, ChenX, ZhangX, FangY, SprickR S, ChenX. Environ. Sci. Nano, 2022, 9: 2464
CrossRef Google scholar
[53]
LiG, XieZ, ChaiS, ChenX, WangX. Appl. Catal. B, 2021, 283: 119637
CrossRef Google scholar
[54]
IsakaY, KawaseY, KuwaharaY, MoriK, YamashitaH. Angew. Chem. Int. Ed., 2019, 58: 5402
CrossRef Google scholar
[55]
ChenD, ChenW, WuY, WangL, WuX, XuH, ChenL. Angew. Chem. Int. Ed., 2023, 62: e202217479
CrossRef Google scholar
[56]
LuJ-N, LiuJ-J, DongL-Z, LinJ-M, YuF, LiuJ, LanY-Q. Angew. Chem. Int. Ed., 2023, 62: e202308505
CrossRef Google scholar
[57]
ZengX, LiuY, KangY, LiQ, XiaY, ZhuY, HouH, UddinM H, GengenbachT R, XiaD, SunC, McCarthyD T, DeleticA, YuJ, ZhangX. ACS Catal., 2020, 10: 3697
CrossRef Google scholar
[58]
ZhangP, SunD, ChoA, WeonS, LeeS, LeeJ, HanJ W, KimD-P, ChoiW. Nat. Commun., 2019, 10: 940
CrossRef Google scholar

25

Accesses

0

Citations

Detail

Sections
Recommended

/