Protein@AuNPs Synthesized by Microfluidic Droplet System and Application in Cu(II) and L-Cysteine Sensing

Xiaotong Zhu , Xinyu Li , Li Qi , Rongyue Zhang , Nan Li , Xiaonan He , Juan Qiao

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (1) : 131 -137.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (1) : 131 -137. DOI: 10.1007/s40242-025-4203-0
Article

Protein@AuNPs Synthesized by Microfluidic Droplet System and Application in Cu(II) and L-Cysteine Sensing

Author information +
History +
PDF

Abstract

In this study, Pepsin@AuNPs (Pep@AuNPs) and Trypsin@AuNPs (Try@AuNPs) were synthesized by a microfluidic droplet system using Pepsin and Trypsin as protection reagents and NaOH as reducing reagents. Compared to the synthesis method in a flask, the AuNPs synthesized by the microfluidic droplet system demonstrated uniform nucleation, superior ultraviolet absorption performance, high stability and short preparation cycles (15 min). The detection range of Cu(II) by Pep@AuNPs was 1.0–100.0 µmol/L and the detection limit was 0.3 µmol/L. The detection range of L-Cysteine by Try@AuNPs was 0.3–250.0 mmol/L and the detection limit was 0.1 mmol/L. This universal method provides an effective strategy for the detection of bioactive molecules, such as metal ions and amino acids by AuNPs with protein as a protective agent.

Keywords

Microfluidic droplet system / AuNPs / Trypsin / Pepsin

Cite this article

Download citation ▾
Xiaotong Zhu, Xinyu Li, Li Qi, Rongyue Zhang, Nan Li, Xiaonan He, Juan Qiao. Protein@AuNPs Synthesized by Microfluidic Droplet System and Application in Cu(II) and L-Cysteine Sensing. Chemical Research in Chinese Universities, 2025, 41(1): 131-137 DOI:10.1007/s40242-025-4203-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SoderlingT R J. Biol. Chem., 1976, 251: 4359

[2]

AggarwalS, IkramS Int. J. Biol. Macromol., 2022, 207: 205

[3]

HinterwirthH, LindnerW, LämmerhoferM Anal. Chim. Acta, 2012, 733: 90

[4]

NidhinM, GhoshD, YadavH, YadavN, MajumberS Mater. Sci. Eng. B, 2015, 202: 46

[5]

GoleA, DashC, RaoM, SastryM Chem. Commun., 2000, 4: 297

[6]

ZhangF, LiY, JafariS M, LiuY, SangY, WangS, WangX Food Chem., 2024, 450: 139311

[7]

CaraccioloG, FarokhzadO C, MahmoudiM Trends Biotechnol., 2017, 35: 257

[8]

LiX G, GuoW, XuR A, SongZ Z, NiT T Spectrochim. Acta A, 2022, 272: 120983

[9]

WangG K, LiuX B, YanC L, BaiG Y, LuY Colloid Surface B, 2015, 135: 261

[10]

BoleiningerJ, KurzA, ReussV, SönnichsenC Phys. Chem. Chem. Phys., 2006, 8: 3824

[11]

LazarusL L, YangA S J, ChuS, BrutcheyR L, MalmstadtN Lab on a Chip, 2010, 10: 3377

[12]

LinX Z, TerepkaA D, YangH Nano Lett., 2004, 4: 2227

[13]

JeongG Y, RiccoR, LiangK, LudwigJ, KimJ O, FalcaroP, KimD P Chem. Mater., 2015, 27: 7903

[14]

ChenT Y, YinS, WuJ Trac-Trend Anal. Chem., 2021, 142: 116309

[15]

SeabergJ, KaabipourS, HemmatiS, RamseyJ D Eur. J. Pharm. Biopharm., 2020, 154: 127

[16]

LeeT Y, ChoiT M, ShimT S, FrijnsR A, KimS H Lab on a Chip, 2016, 16: 3415

[17]

QiaoJ, DingH, LiuQ, ZhangR Y, QiL Anal. Chem., 2017, 89: 2080

[18]

DaliberaN C, Rodrigues-JesusM J, Andreata-SantosR, JaniniL M R, OliveiraA F, RodriguesA A, FavaroM T ACS Appl. Nano Mater., 2023, 6: 22774

[19]

ShrimalP, JadejaG, PatelS Chem. Eng. Res. Des., 2020, 153: 728

[20]

MaQ M, CaoJ, GaoY, HanS C, LiangY, ZhangT T, WangX Y, SunY Nanoscale, 2020, 12: 15512

[21]

ChenY, ZhaoD, XiaoF, LiX Y, SuZ W, JiangX Y Adv. Mater., 2023, 35: 2209672

[22]

HaghighiniaA, MovahediradS J. Flow Chem., 2022, 12: 337

[23]

ShepherdS J, IssadoreD, MitchellM J Biomaterials, 2021, 274: 120826

[24]

OhtaR, MorikawaK, TsuyamaY, KitamoriT J. Micromech. Microeng., 2023, 34: 017002

[25]

GaoS Y, XuT G, WuL, ZhuX Y, WangX F, ChenY, LiG, LiX X Biosensors, 2024, 14: 114

[26]

ZhangJ, XuW H, XuF Y, LuW W, HuL Y, ZhouJ L, ZhangC, JiangZ J. Food Eng., 2021, 290: 110212

[27]

BaiX, YuX A, ZhangR, ZhangY, HuY, ZhaoL, ZhangM, TianJ, YuB Y ACS Appl. Nano Mater., 2021, 4: 4919

[28]

MishraA, DasP K Phys. Chem. Chem. Phys., 2022, 24: 22464

[29]

CorreiraJ M, HandaliP R, WebbL J J. Chem. Phys., 2022, 157: 0909002

[30]

DridiN, JinZ, PerngW ACS Nano, 2024, 18: 8649

[31]

CaraccioloG, FarokhzadO C, MahmoudiM Trends Biotechnol., 2017, 35: 257

[32]

SalellesL, FlouryJ, Le FeunteunS Food Funct., 2021, 12: 12468

[33]

RioA R D, KepplerJ K, BoomR M, JanssenA E Food Funct., 2021, 12: 4570

[34]

SantosM P, FerreiraM A, JuniorE C, BonomoR C, VelosoC M Bioproc. Biosyst. Eng., 2023, 46: 1651

[35]

SannaikarM S, InamdarL S, InamdarS R J. Mol. Liq., 2019, 281: 156

[36]

WangG, WangW L, ShangguanE, GaoS Y, LiuY F Mater. Sci. Eng. C, 2020, 111: 110830

[37]

NidhinM, GhoshD, YadavH, YadavN, MajumderS Mater. Sci. Eng. B, 2015, 202: 46

[38]

WangG, LiuX B, YanC L, BaiG Y, LuY Colloids Surfaces B, 2015, 135: 261

[39]

HinterwirthH, LindnerW, LämmerhoferM Anal. Chim. Acta, 2012, 733: 90

[40]

YadavaliS, JeongH H, LeeD, IssadoreD Nat. Commun., 2018, 9: 1222

[41]

PaulI E, RajeshwariA, PrathnaT C, RaichurA M, ChandrasekaranN, MukherjeeA Anal. Methods, 2015, 7: 1453

[42]

ElfikyA A, IbrahimI M, ElghareibA M, BashandyY S, SamirA, HamdyM M, KamalR T, AminF G, ElkaramanyY, RashadA M, AbdelazizY S, FatheyM M Comput. Biol. Med., 2023, 164: 107363

[43]

LuoY, MiaoH, YangX Talanta, 2015, 144: 488

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/