Collections

Recent Advances in Silicon Photonics
Publication years
Loading ...
Article types
Loading ...
  • Select all
  • RESEARCH ARTICLE
    Pascal M. SEILER, Galina GEORGIEVA, Georg WINZER, Anna PECZEK, Karsten VOIGT, Stefan LISCHKE, Adel FATEMI, Lars ZIMMERMANN
    Frontiers of Optoelectronics, 2021, 14(4): 414-425. https://doi.org/10.1007/s12200-021-1242-0

    Upcoming generations of coherent intra/inter data center interconnects currently lack a clear path toward a reduction of cost and power consumption, which are the driving factors for these data links. In this work, the trade-offs associated with a transition from coherent C-band to O-band silicon photonics are addressed and evaluated. The discussion includes the fundamental components of coherent data links, namely the optical components, fiber link and transceivers. As a major component of these links, a monolithic silicon photonic BiCMOS O-band coherent receiver is evaluated for its potential performance and compared to an analogous C-band device.

  • EDITORIAL
    Dingshan Gao, Zhiping Zhou
    Frontiers of Optoelectronics, 2022, 15(2): 27. https://doi.org/10.1007/s12200-022-00030-7
  • REVIEW ARTICLE
    Min Tan, Yuhang Wang, Ken Xingze Wang, Yuan Yu, Xinliang Zhang
    Frontiers of Optoelectronics, 2022, 15(2): 16. https://doi.org/10.1007/s12200-022-00013-8

    Integrated photonics is widely regarded as an important post-Moore’s law research direction. However, it suffers from intrinsic limitations, such as lack of control and satisfactory photonic memory, that cannot be solved in the optical domain and must be combined with electronics for practical use. Inevitably, electronics and photonics will converge. The photonic fabrication and integration technology is gradually maturing and electronics-photonics convergence (EPC) is experiencing a transition from device integration to circuit design. We derive a conceptual framework consisting of regulator, oscillator, and memory for scalable integrated circuits based on the fundamental concepts of purposeful behavior in cybernetics, entropy in information theory, and symmetry breaking in physics. Leveraging this framework and emulating the successes experienced by electronic integrated circuits, we identify the key building blocks for the integrated circuits for EPC and review the recent advances.

  • RESEARCH ARTICLE
    Can Ma, Jin Hou, Chunyong Yang, Ming Shi, Shaoping Chen
    Frontiers of Optoelectronics, 2022, 15(2): 20. https://doi.org/10.1007/s12200-022-00023-6

    The slab effective index difference between the transverse-electric (TE) and transverse-magnetic (TM) polarizations was utilized to obtain complete photonic bandgap (CPBG) in a silicon nitride ( SixNy) photonic crystal slab. For this, coincident frequency range in the TE photonic bandgap (PBG) and TM PBG, which denotes the CPBGs of the slab, must be found with the same structure. Through adjusting the effective index pair of TE and TM polarizations by changing the thickness of the SixNy core layer, and also optimizing the structure parameters within the photonic crystal plane, a large normalized CPBG of 5.62% was theoretically obtained in a slab of SixNy with a refractive index of 2.5. Moreover, based on the obtained CPBG, a microcavity which could support both TE and TM polarization was theoretically demonstrated. The cavity modes for different polarizations were both well confined, which proved the reliability of the CPBG. In addition, using the same method, the lowest refractive index of SixNy on silica slab for a CPBG could be extended to as low as 2. The results indicate that there is potential for development of various high-performance CPBG devices based on SixNy slab technology.

  • RESEARCH ARTICLE
    Junwei Cheng, Yuhe Zhao, Wenkai Zhang, Hailong Zhou, Dongmei Huang, Qing Zhu, Yuhao Guo, Bo Xu, Jianji Dong, Xinliang Zhang
    Frontiers of Optoelectronics, 2022, 15(2): 15. https://doi.org/10.1007/s12200-022-00009-4

    As an important computing operation, photonic matrix–vector multiplication is widely used in photonic neutral networks and signal processing. However, conventional incoherent matrix–vector multiplication focuses on real-valued operations, which cannot work well in complex-valued neural networks and discrete Fourier transform. In this paper, we propose a systematic solution to extend the matrix computation of microring arrays from the real-valued field to the complex-valued field, and from small-scale (i.e., 4 × 4) to large-scale matrix computation (i.e., 16 × 16). Combining matrix decomposition and matrix partition, our photonic complex matrix–vector multiplier chip can support arbitrary large-scale and complex-valued matrix computation. We further demonstrate Walsh-Hardmard transform, discrete cosine transform, discrete Fourier transform, and image convolutional processing. Our scheme provides a path towards breaking the limits of complex-valued computing accelerator in conventional incoherent optical architecture. More importantly, our results reveal that an integrated photonic platform is of huge potential for large-scale, complex-valued, artificial intelligence computing and signal processing.

  • RESEARCH ARTICLE
    Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann
    Frontiers of Optoelectronics, 2022, 15(1): 13. https://doi.org/10.1007/s12200-022-00005-8

    In this paper, we report on polarization combining two-dimensional grating couplers (2D GCs) on amorphous Si:H, fabricated in the backend of line of a photonic BiCMOS platform. The 2D GCs can be used as an interface of a hybrid silicon photonic coherent transmitter, which can be implemented on bulk Si wafers. The fabricated 2D GCs operate in the telecom C-band and show an experimental coupling efficiency of − 5 dB with a wafer variation of ± 1.2 dB. Possibilities for efficiency enhancement and improved performance stability in future design generations are outlined and extension toward O-band devices is also investigated.

  • REVIEW ARTICLE
    Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo
    Frontiers of Optoelectronics, 2022, 15(1): 9. https://doi.org/10.1007/s12200-022-00012-9

    Silicon photonic platforms offer relevance to large markets in many applications, such as optical phased arrays, photonic neural networks, programmable photonic integrated circuits, and quantum computation devices. As one of the basic tuning devices, the thermo-optic phase shifter (TOPS) plays an important role in all these applications. A TOPS with the merits of easy fabrication, low power consumption, small thermal time constant, low insertion loss, small footprint, and low crosstalk, is needed to improve the performance and lower the cost of the above applications. To meet these demands, various TOPS have been proposed and experimentally demonstrated on different foundry platforms In this paper, we review the state-of-the-art of TOPS, including metal heater, doped silicon, silicide, with silicon substrate undercut for heat insulation, folded waveguide structure, and multi-pass waveguide structure. We further compare these TOPSs and propose the directions of the future developments on TOPS.

  • MINI REVIEW
    Jeremy C. Adcock, Yunhong Ding
    Frontiers of Optoelectronics, 2022, 15(1): 7. https://doi.org/10.1007/s12200-022-00006-7

    Photonics is poised to play a unique role in quantum technology for computation, communications and sensing. Meanwhile, integrated photonic circuits—with their intrinsic phase stability and high-performance, nanoscale components—offer a route to scaling. However, each integrated platform has a unique set of advantages and pitfalls, which can limit their power. So far, the most advanced demonstrations of quantum photonic circuitry has been in silicon photonics. However, thin-film lithium niobate (TFLN) is emerging as a powerful platform with unique capabilities; advances in fabrication have yielded loss metrics competitive with any integrated photonics platform, while its large second-order nonlinearity provides efficient nonlinear processing and ultra-fast modulation. In this short review, we explore the prospects of dynamic quantum circuits—such as multiplexed photon sources and entanglement generation—on hybrid TFLN on silicon (TFLN/Si) photonics and argue that hybrid TFLN/Si photonics may have the capability to deliver the photonic quantum technology of tomorrow.

  • REVIEW ARTICLE
    Ciyuan Qiu, Huifu Xiao, Liheng Wang, Yonghui Tian
    Frontiers of Optoelectronics, 2022, 15(1): 1. https://doi.org/10.1007/s12200-022-00001-y

    Optical directed logic (DL) is a novel logic operation scheme that employs electrical signals as operands to control the working states of optical switches to perform the logic functions. This review first provides an overview of the concept and working principle of DL. The developing trends of DL computing are then discussed in detail, including the fundamental optical DL gates, combinational optical DL operations, reconfigurable logic computing, low power optical logic computing, and programmable photonic network. The concluding remarks provide an outlook on the DL future development and its impacts in optical computing.

  • RESEARCH ARTICLE
    Zihan Tao, Bo Wang, Bowen Bai, Ruixuan Chen, Haowen Shu, Xuguang Zhang, Xingjun Wang
    Frontiers of Optoelectronics, 2022, 15(1): 5. https://doi.org/10.1007/s12200-022-00008-5

    Integrated waveguides with slot structures have attracted increasing attention due to their advantages of tight mode confinement and strong light-matter interaction. Although extensively studied, the issue of mode mismatch with other strip waveguide-based optical devices is a huge challenge that prevents integrated waveguides from being widely utilized in large-scale photonic-based circuits. In this paper, we demonstrate an ultra-compact low-loss slot-strip converter with polarization insensitivity based on the multimode interference (MMI) effect. Sleek sinusoidal profiles are adopted to allow for smooth connection between the slot and strip waveguide, resulting reflection reduction. By manipulating the MMI effect with structure optimization, the self-imaging positions of the TE0 and TM0 modes are aligned with minimized footprint, leading to low-loss transmission for both polarizations. The measurement results show that high coupling efficiencies of − 0.40 and − 0.64 dB are achieved for TE0 and TM0 polarizations, respectively. The device has dimensions as small as 1.1 μm × 1.2 μm and composed of factory-available structures. The above characteristics of our proposed compact slot-strip converter makes it a promising device for future deployment in multi-functional integrated photonics systems.