Circuit-level convergence of electronics and photonics: basic concepts and recent advances

Min Tan, Yuhang Wang, Ken Xingze Wang, Yuan Yu, Xinliang Zhang

PDF(1140 KB)
PDF(1140 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (2) : 16. DOI: 10.1007/s12200-022-00013-8
REVIEW ARTICLE
REVIEW ARTICLE

Circuit-level convergence of electronics and photonics: basic concepts and recent advances

Author information +
History +

Abstract

Integrated photonics is widely regarded as an important post-Moore’s law research direction. However, it suffers from intrinsic limitations, such as lack of control and satisfactory photonic memory, that cannot be solved in the optical domain and must be combined with electronics for practical use. Inevitably, electronics and photonics will converge. The photonic fabrication and integration technology is gradually maturing and electronics-photonics convergence (EPC) is experiencing a transition from device integration to circuit design. We derive a conceptual framework consisting of regulator, oscillator, and memory for scalable integrated circuits based on the fundamental concepts of purposeful behavior in cybernetics, entropy in information theory, and symmetry breaking in physics. Leveraging this framework and emulating the successes experienced by electronic integrated circuits, we identify the key building blocks for the integrated circuits for EPC and review the recent advances.

Graphical abstract

Keywords

Integrated photonics / Electronics-photonics convergence (EPC) / Scalability / Stability / Feedback

Cite this article

Download citation ▾
Min Tan, Yuhang Wang, Ken Xingze Wang, Yuan Yu, Xinliang Zhang. Circuit-level convergence of electronics and photonics: basic concepts and recent advances. Front. Optoelectron., 2022, 15(2): 16 https://doi.org/10.1007/s12200-022-00013-8

References

[1]
Kish, F., Lal, V., Evans, P., Corzine, S.W., Ziari, M., Butrie, T., Reffle, M., Tsai, H.S., Dentai, A., Pleumeekers, J., Missey, M., Fisher, M., Murthy, S., Salvatore, R., Samra, P., Demars, S., Kim, N., James, A., Hosseini, A., Studenkov, P., Lauermann, M., Going, R., Lu, M., Zhang, J., Tang, J., Bostak, J., Vallaitis, T., Kuntz, M., Pavinski, D., Karanicolas, A., Behnia, B., Engel, D., Khayam, O., Modi, N., Chitgarha, M.R., Mertz, P., Ko, W., Maher, R., Osenbach, J., Rahn, J.T., Sun, H., Wu, K.T., Mitchell, M., Welch, D.: System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24(1), 1–20 (2018)
CrossRef Google scholar
[2]
Sun, C., Wade, M.T., Lee, Y., Orcutt, J.S., Alloatti, L., Georgas, M.S., Waterman, A.S., Shainline, J.M., Avizienis, R.R., Lin, S., Moss, B.R., Kumar, R., Pavanello, F., Atabaki, A.H., Cook, H.M., Ou, A.J., Leu, J.C., Chen, Y.H., Asanović, K., Ram, R.J., Popović, M.A., Stojanović, V.M.: Single-chip microprocessor that communicates directly using light. Nature 528(7583), 534–538 (2015)
CrossRef Google scholar
[3]
Peng, H., Nahmias, M.A., Lima, T.F., Tait, A.N., Shastri, B.J.: Neuromorphic photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24(6), 1–15 (2018)
CrossRef Google scholar
[4]
Buscaino, B., Taylor, B.D., Kahn, J.M.: Multi-Tb/s-per-fiber coherent co-packaged optical interfaces for data center switches. J. Lightwave Technol. 37(13), 3401–3412 (2019)
CrossRef Google scholar
[5]
Rogers, C., Piggott, A.Y., Thomson, D.J., Wiser, R.F., Opris, I.E., Fortune, S.A., Compston, A.J., Gondarenko, A., Meng, F., Chen, X., Reed, G.T., Nicolaescu, R.: A universal 3D imaging sensor on a silicon photonics platform. Nature 590(7845), 256–261 (2021)
CrossRef Google scholar
[6]
Zheng, S.N., Zou, J., Cai, H., Song, J.F., Chin, L.K., Liu, P.Y., Lin, Z.P., Kwong, D.L., Liu, A.Q.: Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat. Commun. 10(1), 2349 (2019)
CrossRef Google scholar
[7]
Kimerling, L.: Electronic-photonic convergence on silicon. In: IEEE International Conference on Group IV Photonics. IEEE, 1–7 (2008)
[8]
Fahrenkopf, N.M., McDonough, C., Leake, G.L., Su, Z., Timurdogan, E., Coolbaugh, D.D.: The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 25(5), 1–6 (2019)
CrossRef Google scholar
[9]
Greig, W.: Integrated Circuit Packaging, Assembly and Interconnections. Berlin: Springer, 62–64 (2007)
[10]
Churchman, C.W., Ackoff, R.L.: Purposive behavior and cybernetics. Soc. Forces 29(1), 32–39 (1950)
CrossRef Google scholar
[11]
Wiener, N.: Cybernetics: or Control and Communication in the Animal and the Machine. Cambridge: MIT Press (1948)
[12]
Tsien, H.S.: Engineering Cybernetics. McGraw-Hill: New York (1954)
[13]
Enz, C.C., Temes, G.C.: Circuit techniques for reducing the effects of Op-Amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84(11), 1584–1614 (1996)
CrossRef Google scholar
[14]
Enz, C.C., Vittoz, E.A., Krummenacher, F.: A CMOS chopper amplifier. IEEE J. Solid-State Circuits 22(3), 335–342 (1987)
CrossRef Google scholar
[15]
Doany, F., Budd, R., Schares, L., Huynh, T., Wood, M., Kuchta, D., Dupuis, N., Schow, C., Lee, B.M., Sigmund, M.W., Liow, R., Luo, L., Lo, G.: A four-channel silicon photonic carrier with flip-chip integrated semiconductor optical amplifier (SOA) array providing >10-dB gain. In: Proceedings of Electron. Components Technology Conference. IEEE, 1061–1068 (2016)
CrossRef Google scholar
[16]
Park, H., Fang, A., Kodama, S., Bowers, J.: Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt. Express 13(23), 9460–9464 (2005)
CrossRef Google scholar
[17]
Justice, J., Bower, C., Meitl, M., Mooney, M.B., Gubbins, M.A., Corbett, B.: Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photonics 6(9), 610–614 (2012)
CrossRef Google scholar
[18]
Liu, A.Y., Bowers, J.: Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018)
CrossRef Google scholar
[19]
Idjadi, M.H., Aflatouni, F.: Integrated Pound-Drever-Hall laser stabilization system in silicon. Nat. Commun. 8(1), 1209 (2017)
CrossRef Google scholar
[20]
Zhan, C., Ki, W.: Output-capacitor-free adaptively biased low-dropout regulator for system-on-chips. IEEE Trans. Circ. Syst. 57(5), 1017–1028 (2010)
CrossRef Google scholar
[21]
Bellegarde, C., Pargon, E., Sciancalepore, C., Petit-Etienne, C., Hugues, V., Robin-Brosse, D., Hartmann, J.M., Lyan, P.: Improvement of sidewall roughness of submicron SOI waveguides by hydrogen plasma and annealing. IEEE Photonics Technol. Lett. 30(7), 591–594 (2018)
CrossRef Google scholar
[22]
Roeloffzen, C.G.H., Hoekman, M., Klein, E.J., Wevers, L.S., Timens, R.B., Marchenko, D., Geskus, D., Dekker, R., Alippi, A., Grootjans, R., van Rees, A., Oldenbeuving, R.M., Epping, J.P., Heideman, R.G., Worhoff, K., Leinse, A., Geuzebroek, D., Schreuder, E., van Dijk, P.W.L., Visscher, I., Taddei, C., Fan, Y., Taballione, C., Liu, Y., Marpaung, D., Zhuang, L., Benelajla, M., Boller, K.J.: Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018)
CrossRef Google scholar
[23]
Zhang, G., Xu, D.X., Grinberg, Y., Liboiron-Ladouceur, O.: Topological inverse design of nanophotonic devices with energy constraint. Opt. Express 29(8), 12681–12695 (2021)
CrossRef Google scholar
[24]
Haffner, C., Heni, W., Fedoryshyn, Y., Niegemann, J., Melikyan, A., Elder, D.L., Baeuerle, B., Salamin, Y., Josten, A., Koch, U., Hoessbacher, C., Ducry, F., Juchli, L., Emboras, A., Hillerkuss, D., Kohl, M., Dalton, L.R., Hafner, C., Leuthold, J.: All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics 9(8), 525–528 (2015)
CrossRef Google scholar
[25]
Patel, D., Ghosh, S., Chagnon, M., Samani, A., Veerasubramanian, V., Osman, M., Plant, D.V.: Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express 23(11), 14263–14287 (2015)
CrossRef Google scholar
[26]
Lu, Z., Jhoja, J., Klein, J., Wang, X., Liu, A., Flueckiger, J., Pond, J., Chrostowski, L.: Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability. Opt. Express 25(9), 9712–9733 (2017)
CrossRef Google scholar
[27]
Ünlü, M.S., Strite, S.: Resonant cavity enhanced photonic devices. J. Appl. Phys. 78(2), 607–639 (1995)
CrossRef Google scholar
[28]
Sakib, M., Liao, P., Kumar, R., Huang, D., Su, G., Ma, C., Rong, H. A.: 112 Gb/s all-silicon micro-ring photodetector for datacom applications. In: Proceedings of Opt. Fiber Commun. Conf. Post dead-line Papers. IEEE, Paper Th4A.2 (2020)
CrossRef Google scholar
[29]
Ohno, S., Toprasertpong, K., Takagi, S., Takenaka, M.: Demonstration of classification task using optical neural network based on Si micro-ring resonator crossbar array. In: 2020 European Conference on Optical Communications (ECOC). IEEE, 1–4 (2020)
CrossRef Google scholar
[30]
Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philos. Sci. 10(1), 18–24 (1943)
CrossRef Google scholar
[31]
Cover, T.M., Thomas, J.A.: Elements of Information Theory. New Jersey: Wiley-Interscience (2006)
[32]
Collier, J.: Information originates in symmetry breaking. Symmetry Cult. Sci. 7(3), 247–256 (1996)
[33]
Muller, S.: Asymmetry: the Foundation of Information. Berlin: Springer (2007)
[34]
Roldán, É., Martínez, I.A., Parrondo, J.M.R., Petrov, D.: Universal features in the energetics of symmetry breaking. Nat. Phys. 10(6), 457–461 (2014)
CrossRef Google scholar
[35]
Wong, H.S., Raoux, S., Kim, S., Liang, J., Reifenberg, J., Rajendran, B., Asheghi, M., Goodson, K. E.: Phase change memory. Proceedings of the Institute of Radio Engineers 98(12): 2201–2227 (2010)
CrossRef Google scholar
[36]
Wang, Q., Rogers, E.T.F., Gholipour, B., Wang, C.M., Yuan, G., Teng, J., Zheludev, N.I.: Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10(1), 60–65 (2016)
CrossRef Google scholar
[37]
John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)
CrossRef Google scholar
[38]
Tada, K., Nakano, Y.: Semiconductor photonic integrated devices. Electron. Comm. Jpn. Pt. II 77(11), 99–112 (1994)
CrossRef Google scholar
[39]
Gnauck, A.H., Koren, U., Koch, T.L., Choa, F.S., Raybon, G., Bums, C.A., Eisenstein, G.: Four-channel WDM transmission experiment using a photonic-integrated-circuit transmitter. In: Opt. Fiber Comm. Conf. IEEE, Paper PD26 (1990)
CrossRef Google scholar
[40]
Goodman, J.W.: International Trends in Optics. Cambridge: Academic Press (1991)
[41]
Bar-Chaim, N., Margalit, S., Yariv, A., Ury, I.: GaAs integrated optoelectronics. IEEE Trans. Electron Devices 29(9), 1372–1381 (1982)
CrossRef Google scholar
[42]
Matsueda, H., Tanaka, T.P., Nakano, H.: An optoelectronic integrated device including a laser and its driving circuit. Proceedings of Inst. Elec. Eng. 131(5): 299–303 (1984)
CrossRef Google scholar
[43]
Heidel, N.D., Usechak, N.G., Dohrman, C.L., Conway, J.A.: A review of electronic-photonic heterogeneous integration at DARPA. IEEE J. Sel. Top. Quantum Electron. 22(6), 482–490 (2016)
CrossRef Google scholar
[44]
Razavi, B.R.F.: Microelectronics. Hoboken: Prentice Hall Press (2011)
[45]
Yao, X.S., Maleki, L.: Converting light into spectrally pure microwave oscillation. Opt. Lett. 21(7), 483–485 (1996)
CrossRef Google scholar
[46]
Ristic, S., Bhardwaj, A., Rodwell, M.J., Coldren, L.A., Johansson, L.A.: An optical phase-locked loop photonic integrated circuit. J. Lightwave Technol. 28(4), 526–538 (2010)
CrossRef Google scholar
[47]
Sharma, J., Ahasan, S., Phare, C.T., Lipson, M., Krishnaswamy, H.: Continuous-time electro-optic PLL with decimated optical delay/loss and spur cancellation for LIDAR. In: Proceedings of Conf. Lasers Electro Opt. IEEE, 1–2 (2018)
CrossRef Google scholar
[48]
Tan, M., Ye, K.X., Ming, D., Wang, Y.H., Wang, Z.C., Jin, L., Feng, J.B.: Towards electronic-photonic-converged thermo-optic feedback tuning. J. Semicond. 42(2), 023104 (2021)
CrossRef Google scholar
[49]
Gatdula, R., Kim, K., Melikyan, A., Chen, Y.K., Dong, P.: Simultaneous four-channel thermal adaptation of polarization insensitive silicon photonics WDM receiver. Opt. Express 25(22), 27119–27126 (2017)
CrossRef Google scholar
[50]
Zhu, Q., Qiu, C., He, Y., Zhang, Y., Su, Y.: Self-homodyne wavelength locking of a silicon microring resonator. Opt. Express 27(25), 36625–36636 (2019)
CrossRef Google scholar
[51]
Maarten, H., Ziyi, Z., Keren, B.: Automated tuning and channel selection for cascaded micro-ring resonators. In: Proceedings of SPIE. SPIE, vol. 11308 (2020)
[52]
Agarwal, S., Ingels, M., Rakowski, M., Pantouvaki, M., Steyaert, M., Absil, P., Van Campenhout, J.: Wavelength locking of a Si ring modulator using an integrated drop-port OMA monitoring circuit. In: 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 1–4 (2015)
CrossRef Google scholar
[53]
Dong, P., Gatdula, R., Kim, K., Sinsky, J.H., Melikyan, A., Chen, Y.K., de Valicourt, G., Lee, J.: Simultaneous wavelength locking of microring modulator array with a single monitoring signal. Opt. Express 25(14), 16040–16046 (2017)
CrossRef Google scholar
[54]
AlTaha, M.W., Jayatilleka, H., Lu, Z., Chung, J.F., Celo, D., Goodwill, D., Bernier, E., Mirabbasi, S., Chrostowski, L., Shekhar, S.: Monitoring and automatic tuning and stabilization of a 2×2 MZI optical switch for large-scale WDM switch networks. Opt. Express 27(17), 24747–24764 (2019)
CrossRef Google scholar
[55]
Saeedi, S., Emami, A.: Silicon-photonic PTAT temperature sensor for micro-ring resonator thermal stabilization. Opt. Express 23(17), 21875–21883 (2015)
CrossRef Google scholar
[56]
Yang, S., Zhu, X., Zhang, Y., Li, Y., Baehr-Jones, T., Hochberg, M., Bergman, K.: Thermal stabilization of a micro-ring resonator using bandgap temperature sensor. In: 2015 IEEE Optical Interconnects Conference (OI). IEEE, 44–45 (2015)
[57]
Kim, M., Kim, M.H., Jo, Y., Kim, H., Lischke, S., Mai, C., Zimmermann, L., Choi, W.: A fully integrated 25 Gb/s Si ring modulator transmitter with a temperature controller. In: Proceedings of Opt. Fiber Commun. Conf. (OFC). IEEE, p.T3H.7 (2020)
CrossRef Google scholar
[58]
Jayatilleka, H., Murray, K., Guillén-Torres, M.Á., Caverley, M., Hu, R., Jaeger, N.A., Chrostowski, L., Shekhar, S.: Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt. Express 23(19), 25084–25097 (2015)
CrossRef Google scholar
[59]
Jayatilleka, H., Shoman, H., Boeck, R., Jaeger, N.A.F., Chrostowski, L., Shekhar, S.: Automatic configuration and wavelength locking of coupled silicon ring resonators. J. Lightwave Technol. 36(2), 210–218 (2018)
CrossRef Google scholar
[60]
Jayatilleka, H., Shoman, H., Chrostowski, L., Shekhar, S.: Photo-conductive heaters enable control of large-scale silicon photonic ring resonator circuits. Optica 6(1), 84 (2019)
CrossRef Google scholar
[61]
Morichetti, F., Grillanda, S., Carminati, M., Ferrari, G., Sampietro, M., Strain, M.J., Sorel, M., Melloni, A.: Non-invasive onchip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014)
CrossRef Google scholar
[62]
Zanetto, F., Grimaldi, V., Moralis-Pegios, M., Pitris, S., Fotiadis, K., Alexoudi, T., Guglielmi, E., Aguiar, D., De Heyn, P., Ban, Y., Van Campenhout, J., Pleros, N., Ferrari, G., Sampietro, M., Melloni, A.: WDM-based silicon photonic multi-socket interconnect architecture with automated wavelength and thermal drift compensation. J. Lightwave Technol. 38(21), 6000–6006 (2020)
CrossRef Google scholar
[63]
Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., Strain, M., Sorel, M., Sampietro, M., Melloni, A.: Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1(3), 129–136 (2014)
CrossRef Google scholar
[64]
Padmaraju, K., Logan, D.F., Shiraishi, T., Ackert, J.J., Knights, A.P., Bergman, K.: Wavelength locking and thermally stabilizing micro-ring resonators using dithering signals. J. Lightwave Technol. 32(3), 505–512 (2014)
CrossRef Google scholar
[65]
Li, C., Bai, R., Shafik, A., Tabasy, E.Z., Wang, B., Tang, G., Ma, C., Chen, C.H., Peng, Z., Fiorentino, M., Beausoleil, R.G., Chiang, P., Palermo, S.: Silicon photonic transceiver circuits with micro-ring resonator bias-based wavelength stabilization in 65 nm CMOS. IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014)
CrossRef Google scholar
[66]
Li, H., Ding, R., Baehr-Jones, T., Fiorentino, M., Hochberg, M., Palermo, S., Chiang, P.Y., Xuan, Z., Titriku, A., Li, C., Yu, K., Wang, B., Shafik, A., Qi, N., Liu, Y.A.: 25 Gb/s, 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilization in 65 nm CMOS. IEEE J. Solid-State Circuits. 50(12), 3145–3159 (2015)
CrossRef Google scholar
[67]
Yu, K., Chen, C.H., Li, C., Li, H., Titriku, A., Wang, B., Shafik, A., Wang, Z., Fiorentino, M., Chiang, P., Palermo, S.: 25 Gb/s hybrid-integrated silicon photonic receiver with micro-ring w.avelength stabilization. In: Proceedings of Opt. Fiber Commun. Conf. IEEE, Paper W3A–6 (2015)
CrossRef Google scholar
[68]
Annoni, A., Guglielmi, E., Carminati, M., Grillanda, S., Ciccarella, P., Ferrari, G., Sorel, M., Strain, M.J., Sampietro, M., Melloni, A., Morichetti, F.: Automated routing and control of silicon photonic switch fabrics. IEEE J. Sel. Top. Quantum Electron. 22(6), 169–176 (2016)
CrossRef Google scholar
[69]
Mak, J.C.C., Sacher, W.D., Xue, T., Mikkelsen, J.C., Yong, Z., Poon, J.K.S.: Automatic resonance alignment of high-order micro-ring filters. IEEE J. Quantum Electron. 51(11), 1–11 (2015)
CrossRef Google scholar
[70]
Milanizadeh, M., Aguiar, D., Melloni, A., Morichetti, F.: Canceling thermal cross-talk effects in photonic integrated circuits. J. Lightwave Technol. 37(4), 1325–1332 (2019)
CrossRef Google scholar
[71]
Ming, D., Wang, Z., Wang, Y., Tan, M.: First demonstration of closed-loop PWM wavelength locking of a micro-ring resonator in a monolithic photonic-BiCMOS platform. In: IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, 163–164 (2020)
CrossRef Google scholar
[72]
Padmaraju, K., Logan, D.F., Zhu, X., Ackert, J.J., Knights, A.P., Bergman, K.: Integrated thermal stabilization of a microring modulator. Opt. Express 21(12), 14342–14350 (2013)
CrossRef Google scholar
[73]
Sun, C., Wade, M., Georgas, M., Lin, S., Alloatti, L., Moss, B., Kumar, R., Atabaki, A.H., Pavanello, F., Shainline, J.M., Orcutt, J.S., Ram, R.J., Popovic, M., Stojanovic, V.A.: 45 nm CMOSSOI monolithic photonics platform with bit-statistics-based resonant micro-ring thermal tuning. IEEE J. Solid-State Circuits 51(4), 893–907 (2016)
CrossRef Google scholar
[74]
Li, H., Balamurugan, G., Kim, T., Sakib, M.N., Kumar, R., Rong, H., Jaussi, J., Casper, B.A.: 3-D-integrated silicon photonic micro-ring-based 112-Gb/s PAM-4 transmitter with nonlinear equalization and thermal control. IEEE J. Solid-State Circuits 56(1), 19–29 (2021)
CrossRef Google scholar
[75]
Amberg, P., Chang, E., Liu, F., Lexau, J., Zheng, X., Li, G., Shubin, I., Cunningham, J.E., Krishnamoorthy, A.V., Ho, R.: A sub-400 fJ/bit thermal tuner for optical resonant ring modulators in 40 nm CMOS. In: 2012 IEEE Asian Solid State Circuits Conference (A-SSCC). IEEE, 29–32 (2012)
CrossRef Google scholar
[76]
Feng, Z., Fu, S., Tang, M., Shen, P., Liu, D.: Investigation on agile bias control technique for arbitrary-point locking in lithium niobate Mach–Zehnder modulators. Acta Optica Sinica 32(12), 73–78 (2012)
CrossRef Google scholar
[77]
Švarný, J.: Analysis of quadrature bias-point drift of Mach–Zehnder electro-optic modulator. In: 12th Biennial Baltic Electronics Conference. IEEE, 231–234 (2010)
CrossRef Google scholar
[78]
Wang, L.L., Kowalcyzk, T.: A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators. J. Lightwave Technol. 28(11), 1703–1706 (2010)
CrossRef Google scholar
[79]
Kim, M.H., Jung, H.Y., Zimmermann, L., Choi, W.Y.: An integrated Mach–Zehnder modulator bias controller based on eye-amplitude monitoring. In: SPIE OPTO. SPIE (2016)
CrossRef Google scholar
[80]
Kim, M.H., Jung, H.Y., Zimmermann, L., Choi, W.Y.: An integrated Mach–Zehnder modulator bias controller based on eye-amplitude monitoring. In: Proceedings of. SPIE. SPIE, vol. 9751 (2016)
CrossRef Google scholar
[81]
Li, X., Deng, L., Chen, X., Song, H., Liu, Y., Cheng, M., Fu, S., Tang, M., Zhang, M., Liu, D.: Arbitrary bias point control technique for optical IQ modulator based on dither-correlation detection. J. Lightwave Technol. 36(18), 3824–3836 (2018)
CrossRef Google scholar
[82]
Chen, H., Zhang, B., Hu, L., Luo, Y., Hu, Y., Xiao, X., Liang, X., Li, F., Gan, L.: Thermo-optic-based phase-shifter power dither for silicon IQ optical modulator bias-control technology. Opt. Express 27(15), 21546–21564 (2019)
CrossRef Google scholar
[83]
Caspers, J.N., Yun, W., Lukas, C., Mo, M.: Active polarization independent coupling to silicon photonics circuit. In: Proceedings of SPIE. SPIE, vol. 9133 (2014)
CrossRef Google scholar
[84]
Velha, P., Sorianello, V., Preite, M.V., De Angelis, G., Cassese, T., Bianchi, A., Testa, F., Romagnoli, M.: Wide-band polarization controller for Si photonic integrated circuits. Opt. Lett. 41(24), 5656–5659 (2016)
CrossRef Google scholar
[85]
Ma, M., Shoman, H., Tang, K., Shekhar, S., Jaeger, N.A.F., Chrostowski, L.: Automated control algorithms for silicon photonic polarization receiver. Opt. Express 28(2), 1885–1896 (2020)
CrossRef Google scholar
[86]
Ma, M., Shoman, H., Shekhar, S., Jaeger, N.A.F., Chrostowski, L.: Automated adaptation and stabilization of a tunable WDM polarization-independent receiver on active silicon photonic platform. IEEE Photonics J. 12(4), 1–11 (2020)
CrossRef Google scholar
[87]
Wang, X., Liao, R., Zhao, C., Wu, H., Tang, M.: Mach–Zehnder interferometer based endlessly adaptive polarization controller on silicon-photonic platform. In: Proceedings of Opt. Fiber Commun. Conf. IEEE, 1–3 (2021)
CrossRef Google scholar
[88]
Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D.A., Melloni, A., Morichetti, F.: Unscrambling light-automatically undoing strong mixing between modes. Light Sci. Appl. 6(12), e17110 (2017)
CrossRef Google scholar
[89]
Miller, D.A.B.: Self-configuring universal linear optical component. Photon. Res. 1(1), 1–15 (2013)
CrossRef Google scholar
[90]
Choutagunta, K., Roberts, I., Miller, D.A.B., Kahn, J.M.: Adapting Mach–Zehnder mesh equalizers in direct-detection mode-division-multiplexed links. J. Lightwave Technol. 38(4), 723–735 (2020)
CrossRef Google scholar
[91]
Yao, X.S., Maleki, L., Eliyahu, D.: Progress in the opto-electronic oscillator - a ten year anniversary review. IEEE MTT-S International Microwave Symposium Digest 1(1): 287–290 (2004)
[92]
Yao, X.S., Maleki, L.: Optoelectronic oscillator for photonic systems. IEEE J. Quantum Electron. 32(7), 1141–1149 (1996)
CrossRef Google scholar
[93]
Yao, X.S., Maleki, L., Yu, J., Lutes, G., Meirong, T.: Dual-loop opto-electronic oscillator. In: Proceedings of the IEEE International Frequency Control Symposium (Cat. No.98CH36165). IEEE, 545–549 (1998)
[94]
Matsko, A.B., Maleki, L., Savchenkov, A.A., Ilchenko, V.S.: Whispering gallery mode based optoelectronic microwave oscillator. J. Mod. Opt. 50(15–17), 2523–2542 (2003)
CrossRef Google scholar
[95]
Eliyahu, D., Maleki, L.: Tunable, ultra-low phase noise YIG based opto-electronic oscillator. IEEE MTT-S International Microwave Symposium Digest 3(3): 2185–2187 (2003)
[96]
Zhang, W., Yao, J.: A silicon photonic integrated frequency-tunable optoelectronic oscillator. In: 2017 International Topical Meeting on Microwave Photonics (MWP). IEEE, 1–4 (2017)
CrossRef Google scholar
[97]
Tang, J., Hao, T., Li, W., Domenech, D., Baños, R., Muñoz, P., Zhu, N., Capmany, J., Li, M.: Integrated optoelectronic oscillator. Opt. Express 26(9), 12257–12265 (2018)
CrossRef Google scholar
[98]
Satyan, N., Vasilyev, A., Rakuljic, G., Leyva, V., Yariv, A.: Precise control of broadband frequency chirps using optoelectronic feedback. Opt. Express 17(18), 15991–15999 (2009)
CrossRef Google scholar
[99]
Behroozpour, B., Sandborn, P.A.M., Quack, N., Seok, T.J., Matsui, Y., Wu, M.C., Boser, B.E.: Electronic-photonic integrated circuit for 3D microimaging. IEEE J. Solid-State Circuits 52(1), 161–172 (2017)
CrossRef Google scholar
[100]
Binaie, A., Ahasan, S., Krishnaswamy, H.A.: 65 nm CMOS continuous-time electro-optic PLL (CT-EOPLL) with image and harmonic spur suppression for LIDAR. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 103–106 (2019)
CrossRef Google scholar
[101]
Ahasan, S., Binaie, A., Phare, C.T., Lipson, M., Krishnaswamy, H.: A compact, low loss integrated continuous-time electro optic-PLL with maximum range of > 3.3 m. In: Conference on Lasers and Electro-Optics. OSA, p.SM1N.6 (2019)
CrossRef Google scholar
[102]
Enloe, L.H., Rodda, J.L.: Laser phase-locked loop. Proc. IEEE 53(2), 165–166 (1965)
CrossRef Google scholar
[103]
Hirokawa, T., Pinna, S., Hosseinzadeh, N., Maharry, A., Andrade, H., Liu, J., Meissner, T., Misak, S., Movaghar, G., Valenzuela, L.A., Xia, Y., Bhat, S., Gambini, F., Klamkin, J., Saleh, A.A.M., Coldren, L., Buckwalter, J.F., Schow, C.L.: Analog coherent detection for energy efficient intra-data center links at 200 Gbps Per Wavelength. J. Lightwave Technol. 39(2), 520–531 (2021)
CrossRef Google scholar
[104]
Drever, R.W.P., Hall, J.L., Kowalski, F.V., Hough, J., Ford, G.M., Munley, A.J., Ward, H.: Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31(2), 97–105 (1983)
CrossRef Google scholar
[105]
Mabuchi, H.: Coherent feedback control in quantum circuits and networks. In: AIAA Scitech 2019 Forum. AIAA (2019)
CrossRef Google scholar
[106]
Spiller, T.P.: Superconducting circuits for quantum computing. In: Scalable Quantum Computers. New York: John Wiley & Sons, 305–324 (2000)
CrossRef Google scholar
[107]
Moody, G., Sorger, V.J., Juodawlkis, P.W., Loh, W., Camacho, R.M.: Roadmap on integrated quantum photonics. J. Phys. Photonics 4(1), 012501 (2022)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(1140 KB)

Accesses

Citations

Detail

Sections
Recommended

/