Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review

Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo

PDF(3575 KB)
PDF(3575 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (1) : 9. DOI: 10.1007/s12200-022-00012-9
REVIEW ARTICLE
REVIEW ARTICLE

Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review

Author information +
History +

Abstract

Silicon photonic platforms offer relevance to large markets in many applications, such as optical phased arrays, photonic neural networks, programmable photonic integrated circuits, and quantum computation devices. As one of the basic tuning devices, the thermo-optic phase shifter (TOPS) plays an important role in all these applications. A TOPS with the merits of easy fabrication, low power consumption, small thermal time constant, low insertion loss, small footprint, and low crosstalk, is needed to improve the performance and lower the cost of the above applications. To meet these demands, various TOPS have been proposed and experimentally demonstrated on different foundry platforms In this paper, we review the state-of-the-art of TOPS, including metal heater, doped silicon, silicide, with silicon substrate undercut for heat insulation, folded waveguide structure, and multi-pass waveguide structure. We further compare these TOPSs and propose the directions of the future developments on TOPS.

Graphical abstract

Keywords

Thermo-optic phase shifter / Photonic integrated circuits (PICs) / Optical switches / Silicon photonics

Cite this article

Download citation ▾
Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review. Front. Optoelectron., 2022, 15(1): 9 https://doi.org/10.1007/s12200-022-00012-9

References

[1]
Su, Y., Zhang, Y., Qiu, C., Guo, X., Sun, L.: Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications. Adv. Mater. Technol. 5(8), 1901153 (2020)
CrossRef Google scholar
[2]
Rahim, A., Spuesens, T., Baets, R., Bogaerts, W.: Open-access silicon photonics: current status and emerging initiatives. In: Proceedings of the IEEE, pp. 2313–2330. (2018)
CrossRef Google scholar
[3]
Rahim, A., Goyvaerts, J., Szelag, B., Fedeli, J.-M., Absil, P., Aalto, T., Harjanne, M., Littlejohns, C., Reed, G., Winzer, G., Lischke, S., Zimmermann, L., Knoll, D., Geuzebroek, D., Leinse, A., Geiselmann, M., Zervas, M., Jans, H., Stassen, A., Domínguez, C., Muñoz, P., Domenech, D., Lena, A., Lemme, M.C., Baets, R.: Open-access silicon photonics platforms in europe. IEEE J. Sel. Top. Quantum Electron. 25(5), 1–18 (2019)
CrossRef Google scholar
[4]
Shen, Y., Harris, N.C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun, X., Zhao, S., Larochelle, H., Englund, D., Soljačić, M.: Deep learning with coherent nanophotonic circuits. Nat. Photonics 11(7), 441–446 (2017)
CrossRef Google scholar
[5]
Bogaerts, W., Rahim, A.: Programmable photonics: an opportunity for an accessible large-volume PIC ecosystem. IEEE J. Sel. Top. Quantum Electron. (2020)
CrossRef Google scholar
[6]
Baghdadi, R., Gould, M., Gupta, S., Tymchenko, M., Bunandar, D., Ramey, C., Harris, N.C.: Dual slot-mode NOEM phase shifter. Opt. Express 29(12), 19113–19119 (2021)
CrossRef Google scholar
[7]
Kang, G., Kim, S.H., You, J.B., Lee, D.S., Yoo, H., Ha, Y.G., Kim, J.H., Yoo, D.E., Lee, D.W., Youn, C.H., Yu, K.: Silicon-based optical phased array using electro-optic p-i-n phase shifters. IEEE Photonics Technol. Lett. 31, 1685–1688 (2019)
CrossRef Google scholar
[8]
Quack, N., Sattari, H., Takabayashi, A.Y., Zhang, Y., Verheyen, P., Bogaerts, W., Edinger, P., Errando-Herranz, C., Gylfason, K.B.: MEMS-enabled silicon photonic integrated devices and circuits. IEEE J. Quantum Electron. 56(1), 1–10 (2020)
CrossRef Google scholar
[9]
Yamashita, T., Kim, S., Kato, H., Qiu, W., Semba, K., Fujimaki, A., Terai, H.: π phase shifter based on NbN-based ferromagnetic Josephson junction on a silicon substrate. Sci. Rep. 10(1), 13687 (2020)
CrossRef Google scholar
[10]
Landry, A., Son, T.V., Haché, A.: Optical modulation at the interface between silicon and a phase change material. Optik (Stuttgart) 209(6), 164585 (2020)
CrossRef Google scholar
[11]
Kieninger, C., Füllner, C., Zwickel, H., Kutuvantavida, Y., Kemal, J.N., Eschenbaum, C., Elder, D.L., Dalton, L.R., Freude, W., Randel, S., Koos, C.: Silicon-organic hybrid (SOH) Mach–Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss. Opt. Express 28(17), 24693–24707 (2020)
CrossRef Google scholar
[12]
Xie, Y., Shi, Y., Liu, L., Wang, J., Priti, R., Zhang, G., Liboiron-Ladouceur, O., Dai, D.: Thermally-reconfigurable silicon photonic devices and circuits. IEEE J. Sel. Top. Quantum Electron. 26(5), 1–20 (2020)
CrossRef Google scholar
[13]
Qiao, L., Tang, W., Chu, T.: 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 7(1), 42306 (2017)
CrossRef Google scholar
[14]
Edinger, P., Errando-Herranz, C., Gylfason, K.B.: Low-loss MEMS phase shifter for large scale reconfigurable silicon photonics. In: 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE (2019)
CrossRef Google scholar
[15]
Jacques, M., Samani, A., El-Fiky, E., Patel, D., Xing, Z., Plant, D.V.: Optimization of thermo-optic phase-shifter design and miti-gation of thermal crosstalk on the SOI platform. Opt. Express 27(8), 10456–10471 (2019)
CrossRef Google scholar
[16]
Campenhout, J.V., Green, W., Assefa, S., Vlasov, Y.A.: Integrated NiSi waveguide heaters for CMOS-compatible silicon thermooptic devices. Opt. Lett. 35(7), 1013–1015 (2010)
CrossRef Google scholar
[17]
Qiang, X., Zhou, X., Wang, J., Wilkes, C.M., Loke, T., O’Gara, S., Kling, L., Marshall, G.D., Santagati, R., Ralph, T.C., Wang, J.B., O’Brien, J.L., Thompson, M.G., Matthews, J.C.F.: Largescale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12(9), 534–539 (2018)
CrossRef Google scholar
[18]
Priti, R.B., Liboiron-Ladouceur, O.: A broadband rearrangeable non-blocking MZI-based thermo-optic O-band switch in the silicon-on-insulator. In: Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS). Optical Society of America, PM4D–2 (2017)
CrossRef Google scholar
[19]
Horst, F., Green, W.M., Assefa, S., Shank, S.M., Vlasov, Y.A., Offrein, B.J.: Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multi-plexing. Opt. Express 21(10), 11652–11658 (2013)
CrossRef Google scholar
[20]
Zhuang, L., Zhu, C., Xie, Y., Burla, M., Roeloffzen, C.G.H., Hoekman, M., Corcoran, B., Lowery, A.J.: Nyquist-filtering (de) multiplexer using ring resonator assisted interferometer circuit. J. Lightwave Technol. 34(8), 1732–1738 (2016)
CrossRef Google scholar
[21]
Yu, L., Yin, Y., Shi, Y., Dai, D., He, S.: Thermally tunable silicon photonics microdisk resonator with graphene transparent nanoheaters. Optica 3(2), 159–166 (2016)
CrossRef Google scholar
[22]
Guha, B., Cardenas, J., Lipson, M.: Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21(22), 26557–26563 (2013)
CrossRef Google scholar
[23]
Bahadori, M., Gazman, A., Janosik, N., Rumley, S., Zhu, Z., Polster, R., Cheng, Q., Bergman, K.: Thermal rectification of integrated micro heaters for microring resonators in silicon photonics platform. J. Lightwave Technol. 36(3), 773–788 (2018)
CrossRef Google scholar
[24]
Pintus, P., Hofbauer, M., Manganelli, C.L., Fournier, M., Gundavarapu, S., Lemonnier, O., Gambini, F., Adelmini, L., Meinhart, C., Kopp, C., Testa, F., Zimmermann, H., Oton, C.J.: PWM-driven thermally tunable silicon microring resonators: design, fabrication, and characterization. Laser Photonics Rev. 13(9), 1800275 (2019)
CrossRef Google scholar
[25]
DeRose, C.T., Kekatpure, R.D., Trotter, D.C., Starbuck, A., Wendt, J.R., Yaacobi, A., Watts, M.R., Chettiar, U., Engheta, N., Davids, P.S.: Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. Opt. Express 21(4), 5198–5208 (2013)
CrossRef Google scholar
[26]
Sun, J., Timurdogan, E., Yaacobi, A., Zhan, S., Hosseini, E.S., Cole, D.B., Watts, M.R.: Large-scale silicon photonic circuits for optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014)
CrossRef Google scholar
[27]
Huang, C., Jha, A., Lima, T.F., Tait, A.N., Shastri, B.J., Prucnal, P.R.: On-chip programmable nonlinear optical signal processor and its applications. IEEE J. Sel. Top. Quantum Electron. 99, 1–11 (2020)
CrossRef Google scholar
[28]
Sugita, A., Jinguji, K., Takato, N., Katoh, K., Kawachi, M.: Bridge-suspended silica-waveguide thermo-optic phase shifter and its application to Mach–Zehnder type optical switch. IEICE Trans. (1976–1990) 73(1), 105–109 (1990)
[29]
Gu, J., Zhao, Z., Feng, C., Liu, M., Chen, R.T., Pan, D.Z.: Towards area-efficient optical neural networks: an FFT-based architecture. In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 476–481. IEEE (2020)
CrossRef Google scholar
[30]
Pour Fard, M.M., Williamson, I.A.D., Edwards, M., Liu, K., Pai, S., Bartlett, B., Minkov, M., Hughes, T.W., Fan, S., Nguyen, T.A.: Experimental realization of arbitrary activation functions for optical neural networks. Opt. Express 28(8), 12138–12148 (2020)
CrossRef Google scholar
[31]
Qin, G., Zhu, Q., Su, Y.: Fast wavelength seeking in a silicon dual-ring switch based on artificial neural networks. J. Lightwave Technol. 38(18), 5078–5085 (2020)
CrossRef Google scholar
[32]
Wang, J., Bonneau, D., Villa, M., Silverstone, J.W., Santagati, R., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3(4), 407–413 (2016)
CrossRef Google scholar
[33]
Wang, J., Paesani, S., Ding, Y., Santagati, R., Skrzypczyk, P., Salavrakos, A., Tura, J., Augusiak, R., Mančinska, L., Bacco, D., Bonneau, D., Silverstone, J.W., Gong, Q., Acín, A., Rottwitt, K., Oxenløwe, L.K., O’Brien, J.L., Laing, A., Thompson, M.G.: Multidimensional quantum entanglement with large-scale integrated optics. Science 360(6386), 285–291 (2018)
CrossRef Google scholar
[34]
Silverstone, J.W., Bonneau, D., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Zwiller, V., Marshall, G.D., Rarity, J.G., O’Brien, J.L., Thompson, M.G.: On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 8(2), 104–108 (2014)
CrossRef Google scholar
[35]
Chung, S.W., Abediasl, H., Hashemi, H.: A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid-State Circuits 53(1), 275–296 (2018)
CrossRef Google scholar
[36]
Van Acoleyen, K., Bogaerts, W., Jágerská, J., Le Thomas, N., Houdré, R., Baets, R.: Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt. Lett. 34(9), 1477–1479 (2009)
CrossRef Google scholar
[37]
Chen, S., Shi, Y., He, S., Dai, D.: Compact 8-channel thermally reconfigurable optical add/drop multiplexer on silicon. IEEE Photonics Technol. Lett. 28(17), 1874–1877 (2016)
CrossRef Google scholar
[38]
Bogaerts, W., Pérez, D., Capmany, J., Miller, D.A.B., Poon, J., Englund, D., Morichetti, F., Melloni, A.: Programmable photonic circuits. Nature 586(7828), 207–216 (2020)
CrossRef Google scholar
[39]
Pérez-López, D., López, A., DasMahapatra, P., Capmany, J.: Multipurpose self-configuration of programmable photonic circuits. Nat. Commun. 11(1), 6359 (2020)
CrossRef Google scholar
[40]
Liao, S., Ding, Y., Peucheret, C., Yang, T., Dong, J., Zhang, X.: Integrated programmable photonic filter on the silicon-on-insulator platform. Opt. Express 22(26), 31993–31998 (2014)
CrossRef Google scholar
[41]
Xie, Y., Zhuang, L., Boller, K.J., Lowery, A.J.: Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier. J. Opt. 19(6), 065802 (2017)
CrossRef Google scholar
[42]
Hashizume, Y., Katayose, S., Tsuchizawa, T., Watanabe, T., Itoh, M.: Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures. Electron. Lett. 48(19), 1234–1235 (2012)
CrossRef Google scholar
[43]
Densmore, A., Janz, S., Ma, R., Schmid, J.H., Xu, D.X., Delâge, A., Lapointe, J., Vachon, M., Cheben, P.: Compact and low power thermo-optic switch using folded silicon waveguides. Opt. Express 17(13), 10457 (2009)
CrossRef Google scholar
[44]
Smith, F., Wang, W., Wang, X., Li, Y., Cheng, X., Wu, H.: A design study of efficiency enhancement in silicon photonic thermo-optic phase shifters. In: 2019 IEEE Optical Interconnects Conference (OI). IEEE (2019)
CrossRef Google scholar
[45]
Passaro, V., Magno, F., Tsarev, A.: Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides. Opt. Express 13(9), 3429–3437 (2005)
CrossRef Google scholar
[46]
De, S., Das, R., Varshney, R.K., Schneider, T.: Design and simulation of thermo-optic phase shifters with low thermal crosstalk for dense photonic integration. IEEE Access: Pract. Innov. Open Solut. 8, 141632–141640 (2020)
CrossRef Google scholar
[47]
Giuseppe, C., Luigi, S., Ivo, R.: Advance in thermo-optical switches: principles, materials, design, and device structure. Opt. Eng. (Redondo Beach, Calif.) 50(7), 071112 (2011)
CrossRef Google scholar
[48]
Watts, M.R., Sun, J., DeRose, C., Trotter, D.C., Young, R.W., Nielson, G.N.: Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett. 38(5), 733–735 (2013)
CrossRef Google scholar
[49]
Liu, S., Tian, Y., Li, Y., Feng, G., Guo, J.: Comparison of thermos-optic phase-shifters implemented on CUMEC silicon photonics platform. In: Seventh Symposium on Novel Photo-electronic Detection Technology and Application. (2020)
CrossRef Google scholar
[50]
Masood, A., Pantouvaki, M., Lepage, G., Verheyen, P., Van Campenhout, J., Absil, P., Van Thourhout, D., Bogaerts, W.: Comparison of heater architecture for thermal control of silicon photonics circuits. In: IEEE 10th International Conference on Group IV Photonics. IEEE (2013)
CrossRef Google scholar
[51]
Harris, N.C., Ma, Y., Mower, J., Baehr-Jones, T., Englund, D., Hochberg, M., Galland, C.: Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22(9), 10487–10493 (2014)
CrossRef Google scholar
[52]
Fang, Q., Song, J.F., Liow, T.Y., Cai, H., Yu, M.B., Lo, G.Q., Kwong, D.L.: Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technol. Lett. 23(8), 525–527 (2011)
CrossRef Google scholar
[53]
Lu, Z., Murray, K., Jayatilleka, H., Chrostowski, L.: Michelson interferometer thermo-optic switch on SOI with a 50-µW power consumption. In: 2016 IEEE Photonics Conference (IPC). IEEE (2016)
CrossRef Google scholar
[54]
Sun, P., Reano, R.M.: Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express 18(8), 8406–8411 (2010)
CrossRef Google scholar
[55]
Yu, H., Ying, D., Pantouvaki, M., Van Campenhout, J., Absil, P., Hao, Y., Yang, J., Jiang, X.: Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express 22(12), 15178–15189 (2014)
CrossRef Google scholar
[56]
Song, J., Fang, Q., Tao, S.H., Liow, T.Y., Yu, M.B., Lo, G.Q., Kwong, D.L.: Fast and low power Michelson interferometer thermo-optical switch on SOI. Opt. Express 16(20), 15304– 15311 (2008)
CrossRef Google scholar
[57]
Celo, D., Goodwill, D.J., Jiang, J., Dumais, P., Li, M., Bernier, E.: Thermo-optic silicon photonics with low power and extreme resilience to over-drive. In: 2016 IEEE Optical Interconnects Conference (OI). IEEE (2016)
CrossRef Google scholar
[58]
Murray, K., Lu, Z., Jayatilleka, H., Chrostowski, L.: Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon. Opt. Express 23(15), 19575–19585 (2015)
CrossRef Google scholar
[59]
Chung, S., Nakai, M., Hashemi, H.: Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express 27(9), 13430–13459 (2019)
CrossRef Google scholar
[60]
Qiu, H., Liu, Y., Luan, C., Kong, D., Guan, X., Ding, Y., Hu, H.: Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt. Lett. 45(17), 4806–4809 (2020)
[61]
Miller, S.A., Chang, Y.C., Phare, C.T., Shin, M.C., Zadka, M., Roberts, S.P., Stern, B., Ji, X., Mohanty, A., Jimenez Gordillo, O.A., Dave, U.D., Lipson, M.: Large-scale optical phased array using a low-power multi-pass silicon platform. Optica 7(1), 3–6 (2020)
CrossRef Google scholar
[62]
Alves, A.R., Declercq, S., Khan, M.U., Wang, M., Van Iseghem, L., Bogaerts, W.: Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits. IEEE J. Sel. Top. Quantum Electron. https://doi.org/10.1109/JSTQE.2020.2975669 (2020)

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(3575 KB)

Accesses

Citations

Detail

Sections
Recommended

/