Toward coherent O-band data center interconnects
Pascal M. SEILER, Galina GEORGIEVA, Georg WINZER, Anna PECZEK, Karsten VOIGT, Stefan LISCHKE, Adel FATEMI, Lars ZIMMERMANN
Toward coherent O-band data center interconnects
Upcoming generations of coherent intra/inter data center interconnects currently lack a clear path toward a reduction of cost and power consumption, which are the driving factors for these data links. In this work, the trade-offs associated with a transition from coherent C-band to O-band silicon photonics are addressed and evaluated. The discussion includes the fundamental components of coherent data links, namely the optical components, fiber link and transceivers. As a major component of these links, a monolithic silicon photonic BiCMOS O-band coherent receiver is evaluated for its potential performance and compared to an analogous C-band device.
coherent communication / data center / O-band / silicon photonics
[1] |
Zhou X, Urata R, Liu H. Beyond 1Tb/s datacenter interconnect technology: challenges and solutions. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2019
|
[2] |
Urata R, Liu H, Zhou X, Vahdat A. Datacenter interconnect and networking: from evolution to holistic revolution. In: Proceedings of Optical Fiber Communication Conference (OFC). Los Angeles: IEEE, 2017
|
[3] |
Eiselt M H, Dochhan A, Elbers J P. Data center interconnects at 400G and beyond. In: Proceedings of 23rd Opto-Electronics and Communications Conference (OECC). Jeju: IEEE, 2018
|
[4] |
Morsy-Osman M, Plant D V. A comparative study of technology options for next generation intra- and inter-datacenter interconnects. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2018
|
[5] |
Maniloff E, Gareau S, Moyer M. 400G and beyond: coherent evolution to high-capacity inter data center links. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2019
|
[6] |
Schow C L, Schmidtke K. INTREPID: developing power efficient analog coherent interconnects to transform data center networks. In: Proceedings of Optical Fiber Communication Conference (OFC). San Dieo: IEEE, 2019
|
[7] |
Perin J K, Shastri A, Kahn J M. Design of low-power DSP-free coherent receivers for data center links. Journal of Lightwave Technology, 2017, 35(21): 4650–4662
CrossRef
Google scholar
|
[8] |
Seiler P M, Peczek A, Winzer G, Voigt K, Lischke S, Fatemi A, Zimmermann L. 56 GBaud O-band transmission using a photonic BiCMOS coherent receiver. In: Proceedings of European Conference on Optical Communications (ECOC). Brussels: IEEE, 2020
|
[9] |
Knoll D, Lischke S, Barth R, Zimmermann L, Heinemann B, Rucker H, Mai C, Kroh M, Peczek A, Awny A, Ulusoy C, Trusch A, Kruger A, Drews J, Fraschke M, Schmidt D, Lisker M, Voigt K, Krune E, Mai A. High-performance photonic BiCMOS process for the fabrication of high-bandwidth electronic-photonic integrated circuits. In: Proceedings of IEEE International Electron Devices Meeting (IEDM). Washington: IEEE, 2015
|
[10] |
Lischke S, Knoll D, Mai C, Zimmermann L. Advanced photonic BiCMOS technology with high-performance Ge photo detectors. In: Proceedings of SPIE 11088, Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019. San Diego: SPIE, 2019
|
[11] |
Vivien L, Pavesi L. Handbook of Silicon Photonics. Boca Raton: Taylor & Francis, 2013
|
[12] |
Liang T K, Tsang H K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Applied Physics Letters, 2004, 84(15): 2745–2747
CrossRef
Google scholar
|
[13] |
Selvaraja S K, Bogaerts W, Thourhout D V. Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement. Optics Communications, 2011, 284(8): 2141–2144
CrossRef
Google scholar
|
[14] |
Peczek A, Mai C, Winzer G, Zimmermann L. Comparison of cut-back method and optical backscatter reflectometry for wafer level waveguide characterization. In: Proceedings of IEEE 33rd International Conference on Microelectronic Test Structures (ICMTS). Edinburgh: IEEE, 2020
|
[15] |
Perin J K, Shastri A, Kahn J M. Coherent data center links. Journal of Lightwave Technology, 2021, 39(3): 730–741
CrossRef
Google scholar
|
[16] |
Koos C, Jacome L, Poulton C, Leuthold J, Freude W. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Optics Express, 2007, 15(10): 5976–5990
CrossRef
Pubmed
Google scholar
|
[17] |
Dinu M. Dispersion of phonon-assisted nonresonant third-order nonlinearities. IEEE Journal of Quantum Electronics, 2003, 39(11): 1498–1503
CrossRef
Google scholar
|
[18] |
Gajda A. Four wave mixing at 1550 nm in silicon waveguides, Dissertation for the Doctoral Degree. Berlin: Technische Universität Berlin, 2017
|
[19] |
Kupijai S, Rhee H, Al-Saadi A, Henniges M, Bronzi D, Selicke D, Theiss C, Otte S, Eichler H J, Woggon U, Stolarek D, Richter H H, Zimmermann L, Tillack B, Meister S. 25 Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator. Journal of Lightwave Technology, 2016, 34(12): 2920–2923
CrossRef
Google scholar
|
[20] |
Pinguet T, Denton S, Gloeckner S, Mack M, Masini G, Mekis A, Pang S, Peterson M, Sahni S, Dobbelaere P D. High-volume manufacturing platform for silicon photonics. Proceedings of the IEEE, 2018, 106(12): 2281–2290
CrossRef
Google scholar
|
[21] |
Boeuf F, Cremer S, Vulliet N, Pinguet T, Mekis A, Masini G, Verslegers L, Sun P, Ayazi A, Hon N K, Sahni S, Chi Y, Orlando B, Ristoiu D, Farcy A, Leverd F, Broussous L, Pelissier-Tanon D, Richard C, Pinzelli L, Beneyton R, Gourhant O, Gourvest E, Le-Friec Y, Monnier D, Brun P, Guillermet M, Benoit D, Haxaire K, Manouvrier J R, Jan S, Petiton H, Carpentier J F, Quemerais T, Durand C, Gloria D, Fourel M, Battegay F, Sanchez Y, Batail E, Baron F, Delpech P, Salager L, Dobbelaere P D, Sautreuil B. A multi-wavelength 3D-compatible silicon photonics platform on 300 mm SOI wafers for 25 Gb/s applications. In: Proceedings of IEEE International Electron Devices Meeting. Washington: IEEE, 2013
|
[22] |
Lacava C, Carrol L, Bozzola A, Marchetti R, Minzioni P, Cristiani I, Fournier M, Bernabe S, Gerace D, Andreani L C. Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits. In: Proceedings of SPIE 9752, Silicon Photonics XI. San Francisco: SPIE, 2016
|
[23] |
Luo Y, Nong Z, Gao S, Huang H, Zhu Y, Liu L, Zhou L, Xu J, Liu L, Yu S, Cai X. Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror. Optics Letters, 2018, 43(3): 474–477
CrossRef
Pubmed
Google scholar
|
[24] |
Verslegers L, Mekis A, Pinguet T, Chi Y, Masini G, Sun P, Ayazi A, Hon K Y, Sahni S, Gloeckner S, Baudot C, Boeuf F, Dobbelaere P D. Design of low-loss polarization splitting grating couplers. In: Proceedings of Advanced Photonics for Communications. San Diego: IEEE, 2014
|
[25] |
Snyder B, Lepage G, Balakrishnan S, Heyn P D, Verheyen P, Absil P, Campenhout J V. Ultra-broadband, polarization-insensitive SMF-28 fiber edge couplers for silicon photonics. In: Proceedings of IEEE CPMT Symposium Japan (ICSJ). Kyoto: IEEE, 2017
|
[26] |
Picard M J, Latrasse C, Larouche C, Painchaud Y, Poulin M, Pelletier F, Guy M. CMOS-compatible spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low-loss low-wavelength dependence and high tolerance to misalignment. In: Proceedings of SPIE 9752, Silicon Photonics XI. San Francisco: SPIE, 2016
|
[27] |
Barwicz T, Peng B, Leidy R, Janta-Polczynski A, Houghton T, Khater M, Kamlapurkar S, Engelmann S, Fortier P, Boyer N, Green W M J. Integrated metamaterial interfaces for self-aligned fiber-to-chip coupling in volume manufacturing. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 1–13
CrossRef
Google scholar
|
[28] |
Barwicz T, Janta-Polczynski A, Takenobu S, Watanabe K, Langlois R, Taira Y, Suematsu K, Numata H, Peng B, Kamlapurkar S, Engelmann S, Fortier P, Boyer N. Advances in interfacing optical fibers to nanophotonic waveguides via mechanically compliant polymer waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(2): 1–12
CrossRef
Pubmed
Google scholar
|
[29] |
Marchetti R, Lacava C, Carroll L, Gradkowski K, Minzioni P. Coupling strategies for silicon photonics integrated chips. Photonics Research, 2019, 7(2): 201–239
CrossRef
Google scholar
|
[30] |
Georgieva G, Voigt K, Mai C, Seiler P M, Petermann K, Zimmermann L. Cross-polarization effects in sheared 2D grating couplers in a photonic BiCMOS technology. Japanese Journal of Applied Physics, 2020, 59: SOOB03
|
[31] |
Kunkel R, Bach H G, Hoffmann D, Weinert C M, Molina-Fernandez I, Halir R. First monolithic InP-based 90°-hybrid OEIC comprising balanced detectors for 100GE coherent frontends. In: Proceedings of IEEE International Conference on Indium Phosphide & Related Materials. Newport Beach: IEEE, 2009
|
[32] |
Voigt K, Zimmermann L, Winzer G, Tian H, Tillack B, Petermann K. C-band optical 90° hybrids in silicon nanowaveguide technology. IEEE Photonics Technology Letters, 2011, 23(23): 1769–1771
CrossRef
Google scholar
|
[33] |
Halir R, Roelkens G, Ortega-Moñux A, Wangüemert-Pérez J G. High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler. Optics Letters, 2011, 36(2): 178–180
CrossRef
Pubmed
Google scholar
|
[34] |
Yang W, Yin M, Li Y, Wang X, Wang Z. Ultra-compact optical 90° hybrid based on a wedge-shaped 2 × 4 MMI coupler and a 2 × 2 MMI coupler in silicon-on-insulator. Optics Express, 2013, 21(23): 28423–28431
CrossRef
Pubmed
Google scholar
|
[35] |
Guan H, Ma Y, Shi R, Zhu X, Younce R, Chen Y, Roman J, Ophir N, Liu Y, Ding R, Baehr-Jones T, Bergman K, Hochberg M. Compact and low loss 90° optical hybrid on a silicon-on-insulator platform. Optics Express, 2017, 25(23): 28957–28968
CrossRef
Google scholar
|
[36] |
Voigt K, Mai C, Petousi D, Peczek A, Knoll D, Lischke S, Winzer G, Zimmermann L. Optical transmitter design in a SiGe BiCMOS photonic platform. In: Proceedings of Asia Communications and Photonics Conference (ACP). Chengdu: IEEE, 2019
|
[37] |
Corning Incorporated. Corning SMF-28 ultra optical fiber product information. Available: www.corning.com/media/worldwide/coc/documents/Fiber/PI-1424-AEN.pdf. Accessed on: Feb. 20, 2021
|
[38] |
International Telecommunication Union. ITU-T G.652 (11/2016) Series G: transmission systems and media, digital systems and networks. 2016. Available: handle.itu.int/11.1002/1000/13076. Accessed on: Jan. 5, 2021
|
[39] |
Spinnler B. Equalizer design and complexity for digital coherent receivers. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(5): 1180–1192
CrossRef
Google scholar
|
[40] |
Pillai B S G, Sedighi B, Guan K, Anthapadmanabhan N P, Shieh W, Hinton K J, Tucker R S. End-to-end energy modeling and analysis of long-haul coherent transmission systems. Journal of Lightwave Technology, 2014, 32(18): 3093–3111
CrossRef
Google scholar
|
[41] |
Nagarajan R, Lyubomirsky I. Low-complexity DSP for inter-data center optical fiber communications. In: Proceedings of European Conference on Optical Communications (ECOC). Brussels: IEEE, 2020
|
[42] |
Morsy-Osman M, Sowailem M, El-Fiky E, Goodwill T, Hoang T, Lessard S, Plant D V. DSP-free ‘coherent-lite’ transceiver for next generation single wavelength optical intra-datacenter interconnects. Optics Express, 2018, 26(7): 8890–8903
CrossRef
Pubmed
Google scholar
|
[43] |
Perin J K, Shastri A, Kahn J M. Data center links beyond 100 Gbit/s per wavelength. Optical Fiber Technology, 2018, 44: 69–85
CrossRef
Google scholar
|
[44] |
Witzens J. High-speed silicon photonics modulators. Proceedings of the IEEE, 2018, 106(12): 2158–2182
CrossRef
Google scholar
|
[45] |
Petousi D. Analysis of Integrated Silicon Depletion-Type Mach-Zehnder Modulators for Advanced Modulation Formats. Berlin: Mensch & Buch Verlag, 2017
|
[46] |
Milivojevic B, Raabe C, Shastri A, Webster M, Metz P, Sunder S, Chattin B, Wiese S, Dama B, Shastri K. 112Gb/s DP-QPSK transmission over 2427 km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver. In: Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. Anaheim: IEEE, 2013
|
[47] |
Dong P, Liu X, Chandrasekhar S, Buhl L L, Aroca R, Chen Y K. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 150–157
CrossRef
Google scholar
|
[48] |
Lin J, Sepehrian H, Rusch L A, Shi W. CMOS-compatible silicon photonic IQ modulator for 84 Gbaud 16QAM and 70 Gbaud 32QAM. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2018
|
[49] |
Zhou J, Wang J, Zhang Q. Silicon photonics for 100Gbaud. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2020
|
[50] |
Zhalehpour S, Lin J, Guo M, Sepehrian H, Zhang Z, Rusch L A, Shi W. All-silicon IQ modulator for 100 GBaud 32QAM transmissions. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2019
|
[51] |
Melikyan A, Kaneda N, Kim K, Baeyens Y, Dong P. Differential drive I/Q modulator based on silicon photonic electro-absorption modulators. Journal of Lightwave Technology, 2020, 38(11): 2872–2876
CrossRef
Google scholar
|
[52] |
Doerr C, Chen L, Nielsen T, Aroca R, Chen L, Banaee M, Azemati S, McBrien G, Park S Y, Geyer J, Guan B, Mikkelsen B, Rasmussen C, Givehchi M, Wang Z, Potsaid B, Lee H C, Swanson E, Fujimoto J G. O, E, S, C, and L band silicon photonics coherent modulator/receiver. In: Proceedings of Optical Fiber Communication Conference (OFC). Anaheim: IEEE, 2016
|
[53] |
Samani A, El-Fiky E, Osman M, Patel D, Li R, Jacques M, Plant D. 180 Gb/s single carrier single polarization 16-QAM transmission using an O-band silicon photonic IQM. Optics Express, 2019, 27(10): 14447–14456
CrossRef
Pubmed
Google scholar
|
[54] |
Mehrpoor G R, Schmidt-Langhorst C, Wohlfeil B, Elschner R, Rafique D, Emmerich R, Dochhan A, Lopez I, Rito P, Petousi D, Kissinger D, Zimmermann L, Schubert C, Schmauss B, Eiselt M, Elbers J P. 64-GBd DP-bipolar-8ASK transmission over 120 km SSMF employing a monolithically integrated driver and MZM in 0.25-µm SiGe BiCMOS technology. In: Proceedings of Optical Fiber Communication Conference (OFC). San Diego: IEEE, 2009
|
[55] |
Zhou Z, Chen R, Li X, Li T. Development trends in silicon photonics for data centers. Optical Fiber Technology, 2018, 44: 13–23
CrossRef
Google scholar
|
[56] |
Rahim A, Hermans A, Wohlfeil B, Petousi D, Kuyken B, Thourhout D V, Baets R. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Advanced Photonics, 2021, 3(2): 024003
CrossRef
Google scholar
|
[57] |
Tu Z, Gong P, Zhou Z, Wang X. Ultracompact 100 Gbps coherent receiver monolithically integrated on silicon. Japanese Journal of Applied Physics, 2016, 55(4S): 04EC04
CrossRef
Google scholar
|
[58] |
Kroh M, Unterbörsch G, Tsianos G, Ziegler R, Steffan A G, Bach H G, Kreissl J, Kunkel R, Mekonnen G G, Rehbein W, Schmidt D, Ludwig R, Petermann K, Bruns J, Mitze T, Voigt K, Zimmermann L. Hybrid integrated 40 Gb/s DPSK receiver on SOI. In: Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. San Diego: IEEE, 2009
|
[59] |
Winzer G, Kroh M, Lischke S, Knoll D, Voigt K, Tian H, Mai C, Petousi D, Micusik D, Zimmermann L, Tillack B, Petermann K. Monolithic photonic-electronic QPSK receiver for 28Gbaud. In: Proceedings of Optical Fiber Communication Conference (OFC). Los Angeles: IEEE, 2015
|
[60] |
Doerr C, Chen L, Vermeulen D, Nielsen T, Azemati S, Stulz S, McBrien G, Xu X M, Mikkelsen B, Givehchi M, Rasmussen C, Park S Y. Single-chip silicon photonics 100-Gb/s coherent transceiver. In: Proceedings of Optical Fiber Communication Conference (OFC). San Francisco: IEEE, 2014
|
[61] |
Verbist J, Zhang J, Moeneclaey B, Soenen W, Weerdenburg J V, Uden R V, Okonkwo C, Bauwelinck J, Roelkens G, Yin X. A 40-GBd QPSK/16-QAM integrated silicon coherent receiver. IEEE Photonics Technology Letters, 2016, 28(19): 2070–2073
CrossRef
Google scholar
|
[62] |
Dong P, Liu X, Chandrasekhar S, Buhl L L, Aroca R, Baeyens Y, Chen Y K. 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. Anaheim: IEEE, 2013
|
[63] |
Doerr C R, Winzer P J, Chandrasekhar S, Rasras M, Earnshaw M, Weiner J, Gill D M, Chen Y K. Monolithic silicon coherent receiver. In: Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. San Diego: IEEE, 2009
|
[64] |
Gudyriev S, Kress C, Zwickel H, Kemal J N, Lischke S, Zimmermann L, Koos C, Scheytt J C. Coherent ePIC receiver for 64 GBaud QPSK in 0.25 μm photonic BiCMOS technology. Journal of Lightwave Technology, 2019, 37(1): 103–109
CrossRef
Google scholar
|
[65] |
Awny A, Nagulapalli R, Kroh M, Hoffmann J, Runge P, Micusik D, Fischer G, Ulusoy A C, Ko M, Kissinger D. A linear differential transimpedance amplifier for 100-Gb/s integrated coherent optical fiber receivers. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 973–986
CrossRef
Google scholar
|
[66] |
Doussiere P, Shieh C L, DeMars S, Dzurko K. Very high power 1310 nm InP single mode distributed feedback laser diode with reduced linewidth. In: Proceedings of SPIE 6485, Novel In-Plane Semiconductor Lasers VI. San Jose: SPIE, 2007
|
[67] |
Schow C L. Low power analog coherent links for next-generation datacenters. In: Proceedings of Conference on Lasers and Electro-Optics. San Jose: IEEE, 2019
|
/
〈 | 〉 |