Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line

Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann

PDF(1853 KB)
PDF(1853 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (1) : 13. DOI: 10.1007/s12200-022-00005-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line

Author information +
History +

Abstract

In this paper, we report on polarization combining two-dimensional grating couplers (2D GCs) on amorphous Si:H, fabricated in the backend of line of a photonic BiCMOS platform. The 2D GCs can be used as an interface of a hybrid silicon photonic coherent transmitter, which can be implemented on bulk Si wafers. The fabricated 2D GCs operate in the telecom C-band and show an experimental coupling efficiency of − 5 dB with a wafer variation of ± 1.2 dB. Possibilities for efficiency enhancement and improved performance stability in future design generations are outlined and extension toward O-band devices is also investigated.

Graphical abstract

Keywords

Hybrid integration / Photonic BiCMOS / Amorphous silicon / Two-dimensional grating coupler (2D GC) / Dual-polarization coherent communication / Silicon photonics

Cite this article

Download citation ▾
Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line. Front. Optoelectron., 2022, 15(1): 13 https://doi.org/10.1007/s12200-022-00005-8

References

[1]
Zhou, X. , Urata, R. , Liu, H. : Beyond 1 Tb/s intra-data center interconnect technology: IM-DD or coherent? J. Lightwave Technol. 38 (2), 475- 484 (2020)
[2]
NeoPhotonics . White Paper—Photonic IC Enabled Coherent Optical Systems
[3]
Zhou, J. , Wang, J. , Zhu, L. , Zhang, Q. : Silicon photonics for 100 Gbaud. J. Lightwave Technol. 39 (4), 857- 867 (2021)
[4]
Mekis, A. , Gloeckner, S. , Masini, G. , Narasimha, A. , Pinguet, T. , Sahni, S. , Dobbelaere, P.D. : A grating-coupler-enabled CMOS photonics platform. IEEE J. Sel. Top. Quantum Electron. 17 (3), 597- 608 (2011)
[5]
Zimmermann, L. , Knoll, D. , Kroh, M. , Lischke, S. , Petousi, D. , Winzer, G. , Yamamoto, Y. : BiCMOS silicon photonics platform. In: Optical Fiber Communication Conference (OFC) 2015, Los Angeles, CA, USA (2015)
[6]
Rakowski, M. , Meagher, C. , Nummy, K. , Aboketaf, A. , Ayala, J. , Bian, Y. , Harris, B. , Mclean, K. , McStay, K. , Sahin, A. , Medina, L. , Peng, B. , Sowinski, Z. , Stricker, A. , Houghton, T. , Hedges, C. , Giewont, K. , Jacob, A. , Letavic, T. , Riggs, D. , Yu, A. , Pellerin, J. : 45 nm CMOS-silicon photonics monolithic technology (45CLO) for next-generation, low power and high speed optical interconnects. In: Optical Fiber Communication Conference (OFC) 2020, San Diego, CA, USA (2020)
[7]
Zhou, X. , Urata, R. , Liu, H. : Beyond 1 Tb/s datacenter interconnect technology: challenges and solutions. In: Optical Fiber Communication Conference (OFC) 2019, San Diego, CA, USA (2019)
[8]
Petousi, D. , Zimmermann, L. , Voigt, K. , Petermann, K. : Performance limits of depletion-type silicon Mach-Zehnder modulators for telecom applications. J. Lightwave Technol. 31 (22), 3556- 3562 (2013)
[9]
Petousi, D. , Zimmermann, L. , Gajda, A. , Kroh, M. , Voigt, K. , Winzer, G. , Tillack, B. , Petermann, K. : Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation. IEEE J. Sel. Top. Quantum Electron. 21 (4), 199- 206 (2015)
[10]
Alexander, K. , George, J.P. , Verbist, J. , Neyts, K. , Kuyken, B. , Van Thourhout, D. , Beeckman, J. : Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9 (1), 3444 (2018)
[11]
Eltes, F. , Mai, C. , Caimi, D. , Kroh, M. , Popoff, Y. , Winzer, G. , Petousi, D. , Lischke, S. , Ortmann, J.E. , Czornomaz, L. , Zimmermann, L. , Fompeyrine, J. , Abel, S. : A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Lightwave Technol. 37 (5), 1456- 1462 (2019)
[12]
Rao, A. , Patil, A. , Rabiei, P. , Honardoost, A. , DeSalvo, R. , Paolella, A. , Fathpour, S. : High-performance and linear thinfilm lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41 (24), 5700- 5703 (2016)
[13]
Weigel, P.O. , Zhao, J. , Fang, K. , Al-Rubaye, H. , Trotter, D. , Hood, D. , Mudrick, J. , Dallo, C. , Pomerene, A.T. , Starbuck, A.L. , DeRose, C.T. , Lentine, A.L. , Rebeiz, G. , Mookherjea, S. : Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26 (18), 23728- 23739 (2018)
[14]
Boynton, N. , Cai, H. , Gehl, M. , Arterburn, S. , Dallo, C. , Pomerene, A. , Starbuck, A. , Hood, D. , Trotter, D.C. , Friedmann, T. , DeRose, C.T. , Lentine, A. : A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator. Opt. Express 28 (2), 1868- 1884 (2020)
[15]
Takei, R. , Maegami, Y. , Omoda, E. , Sakakibara, Y. , Mori, M. , Kamei, T. : Low-loss and low wavelength-dependence vertical interlayer transition for 3D silicon photonics. Opt. Express 23 (14), 18602- 18610 (2015)
[16]
Takei, R. , Manako, S. , Omoda, E. , Sakakibara, Y. , Mori, M. , Kamei, T. : Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect. Opt. Express 22 (4), 4779- 4788 (2014)
[17]
Sherwood-Droz, N. , Lipson, M. : Scalable 3D dense integration of photonics on bulk silicon. Opt. Express 19 (18), 17758- 17765 (2011)
[18]
Ong, E.W. , Fahrenkopf, N.M. , Coolbaugh, D.D. : SiNx bilayer grating coupler for photonic systems. OSA Continuum 1 (1), 13- 25 (2018)
[19]
Zhu, S. , Lo, G.Q. : Vertically stacked multilayer photonics on Bulk silicon toward three-dimensional integration. J. Lightwave Technol. 34 (2), 386- 392 (2016)
[20]
Kang, J.H. , Atsumi, Y. , Hayashi, Y. , Suzuki, J. , Kuno, Y. , Amemiya, T. , Nishiyama, N. , Arai, S. : Amorphous-silicon interlayer grating couplers with metal mirrors toward 3-D interconnection. IEEE J. Sel. Top. Quantum Electron. 20 (4), 317- 322 (2014)
[21]
Takei, R. : Amorphous silicon photonics. In: Crystalline and noncrystalline solids, InTech, 2016. https://doi.org/10.5772/63374
[22]
Knoll, D. , Lischke, S. , Barth, R. , Zimmermann, L. , Heinemann, B. , Rucker, H. , Mai, C. , Kroh, M. , Peczek, A. , Awny, A. , Ulusoy, C. , Trusch, A. , Kruger, A. , Drews, J. , Fraschke, M. , Schmidt, D. , Lisker, M. , Voigt, K. , Krune, E. , Mai, A. : High-performance photonic BiCMOS process for the fabrication of high-bandwidth electronic-photonic integrated circuits. In: 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA (2015)
[23]
Knoll, D. , Lischke, S. , Awny, A. , Kroh, M. , Krune, E. , Mai, C. , Peczek, A. , Petousi, D. , Simon, S. , Voigt, K. , Winzer, G. , Zimmermann, L. : BiCMOS silicon photonics platform for fabrication of high-bandwidth electronic-photonic integrated circuits. In: 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Austin, TX, USA (2016)
[24]
Marchetti, R. , Lacava, C. , Carroll, L. , Gradkowski, K. , Minzioni, P. : Coupling strategies for silicon photonics integrated chips. Photon. Res. 7 (2), 201- 239 (2019)
[25]
Mitze, T. , Schnarrenberger, M. , Zimmermann, L. , Bruns, J. , Fidorra, F. , Janiak, K. , Kreissl, J. , Fidorra, S. , Heidrich, H. , Petermann, K. : CWDM transmitter module based on hybrid integration. IEEE J. Sel. Top. Quantum Electron. 12 (5), 983- 987 (2006)
[26]
Duprez, H. , Descos, A. , Ferrotti, T. , Sciancalepore, C. , Jany, C. , Hassan, K. , Seassal, C. , Menezo, S. , Ben, B.B. : 1310 nm hybrid InP/InGaAsP on silicon distributed feedback laser with high sidemode suppression ratio. Opt. Express 23 (7), 8489- 8497 (2015)
[27]
Shin, D. , Cha, J. , Kim, S. , Shin, Y. , Cho, K. , Ha, K. , Jeong, G. , Hong, H. , Lee, K. , Kang, H.K. : O-band DFB laser heterogeneously integrated on a bulk-silicon platform. Opt. Express 26 (11), 14768- 14774 (2018)
[28]
Georgieva, G. , Petermann, K. : Analytical and numerical investigation of silicon photonic 2D grating couplers with a waveguidetograting shear angle. In: 2018 Progress in Electromagnetics Research Symposium (PIERS), Toyama, Japan (2018)
[29]
Georgieva, G. , Voigt, K. , Mai, C. , Seiler, P.M. , Petermann, K. , Zimmermann, L. : Cross-polarization effects in sheared 2D grating couplers in a photonic BiCMOS technology. Jpn. J. Appl. Phys. 59, SOOB03 (2020)
[30]
Georgieva, G. , Voigt, K. , Seiler, P.M. , Mai, C. , Petermann, K. , Zimmermann, L. : A physical origin of cross-polarization and higher-order modes in two-dimensional (2D) grating couplers and the related device performance limitations. J. Phys. 3 (3), 035002 (2021)
[31]
Georgieva, G. , Seiler, P. M. , Mai, C. , Petermann, K. , Zimmermann, L. : 2D grating coupler induced polarization crosstalk in coherent transceivers for next generation data center interconnects. In: The Optical Fiber Communication Conference (OFC) (2021)
[32]
Seiler, P.M. , Georgieva, G. , Winzer, G. , Peczek, A. , Voigt, K. , Lischke, S. , Fatemi, A. , Zimmermann, L. : Toward coherent O-band data center interconnects. Frontiers of Optoelectronics 14 (4), 414- 425 (2021)
[33]
Carroll, L. , Gerace, D. , Cristiani, I. , Menezo, S. , Andreani, L.C. : Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics. Opt. Express 21 (18), 21556- 21568 (2013)
[34]
Luo, Y. , Nong, Z. , Gao, S. , Huang, H. , Zhu, Y. , Liu, L. , Zhou, L. , Xu, J. , Liu, L. , Yu, S. , Cai, X. : Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror. Opt. Lett. 43 (3), 474- 477 (2018)
[35]
Peczek, A. , Mai, C. , Winzer, G. , Zimmermann, L. : Comparison of cut-back method and optical backscatter reflectometry for wafer level waveguide characterization. In: 2020 IEEE 33rd International Conference on Microelectronic Test Structures (ICMTS), Edinburgh, UK (2020)

RIGHTS & PERMISSIONS

2022 The Author(s)
AI Summary AI Mindmap
PDF(1853 KB)

Accesses

Citations

Detail

Sections
Recommended

/