Recent advances in integrated optical directed logic operations for high performance optical computing: a review
Ciyuan Qiu, Huifu Xiao, Liheng Wang, Yonghui Tian
Recent advances in integrated optical directed logic operations for high performance optical computing: a review
Optical directed logic (DL) is a novel logic operation scheme that employs electrical signals as operands to control the working states of optical switches to perform the logic functions. This review first provides an overview of the concept and working principle of DL. The developing trends of DL computing are then discussed in detail, including the fundamental optical DL gates, combinational optical DL operations, reconfigurable logic computing, low power optical logic computing, and programmable photonic network. The concluding remarks provide an outlook on the DL future development and its impacts in optical computing.
Optical computing / Directed logic (DL) / Optical switch
[1] |
McAdams,H.H., Shapiro,L.: Circuit simulation of genetic networks. Science 269 (5224), 650- 656 (1995)
|
[2] |
Saraswat,K.C., Mohammadi,F.: Effect of scaling of interconnections on the time delay of VLSI circuits. IEEE Trans. Electron Devices 29 (4), 645- 650 (1982)
|
[3] |
Mack,C.A.: Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf. 24 (2), 202- 207 (2011)
|
[4] |
Theis,T.N., Wong,H.P.: The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19 (2), 41- 50 (2017)
|
[5] |
Waldrop,M.M.: The chips are down for Moore’s law. Nature 530 (7589), 144- 147 (2016)
|
[6] |
Caulfield,H.J., Dolev,S.: Why future supercomputing requires optics. Nat. Photon. 4 (5), 261- 263 (2010)
|
[7] |
Zhang,X., Wang,Y., Sun,J., Liu,D., Huang,D.: All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs. Opt. Express 12 (3), 361- 366 (2004)
|
[8] |
Fu,Y., Hu,X., Lu,C., Yue,S., Yang,H., Gong,Q.: All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12 (11), 5784- 5790 (2012)
|
[9] |
Qian,C., Lin,X., Lin,X., Xu,J., Sun,Y., Li,E., Zhang,B., Chen,H.: Performing optical logic operations by a diffractive neural network. Light Sci. Appl. 9 (1), 59 (2020)
|
[10] |
Soref,R.A.: Tutorial: integrated-photonic switching structures. APL Photon. 3 (2), 021101 (2018)
|
[11] |
Miller,D.A.B.: Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35 (3), 346- 396 (2017)
|
[12] |
Thomson,D., Zilkie,A., Bowers,J.E., Komljenovic,T., Reed,G.T., Vivien,L., Marris-Morini,D., Cassan,E., Virot,L., Fédéli,J.M., Hartmann,J.M., Schmid,J.H., Xu,D.X., Boeuf,F., O’Brien,P., Mashanovich,G.Z., Nedeljkovic,M.: Roadmap on silicon photonics. J. Opt. 18 (7), 073003 (2016)
|
[13] |
Xu,Q., Lipson,M.: All-optical logic based on silicon microring resonators. Opt. Express 15 (3), 924- 929 (2007)
|
[14] |
Hardy,J., Shamir,J.: Optics inspired logic architecture. Opt. Express 15 (1), 150- 165 (2007)
|
[15] |
Minzioni,P., Lacava,C., Tanabe,T., Dong,J., Hu,X., Csaba,G., Porod,W., Singh,G., Willner,A.E., Almaiman,A., Torres-Company,V., Schröder,J., Peacock,A.C., Strain,M.J., Parmigiani,F., Contestabile,G., Marpaung,D., Liu,Z., Bowers,J.E., Chang,L., Fabbri,S., Vázquez,M.R., Bharadwaj,V., Eaton,S.M., Lodahl,P., Zhang,X., Eggleton,B.J., Munro,W.J., Nemoto,K., Morin,O., Laurat,J., Nunn,J.: Roadmap on all-optical processing. J. Opt. 21 (6), 063001 (2019)
|
[16] |
Li,F., Vo,T.D., Husko,C., Pelusi,M., Xu,D.X., Densmore,A., Ma,R., Janz,S., Eggleton,B.J., Moss,D.J.: All-optical XOR logic gate for 40 Gb/s DPSK signals via FWM in a silicon nanowire. Opt. Express 19 (21), 20364- 20371 (2011)
|
[17] |
Dong,W., Huang,Z., Hou,J., Santos,R., Zhang,X.: Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Opt. Lett. 43 (9), 2150- 2153 (2018)
|
[18] |
Fjelde,T., Wolfson,D., Kloch,A., Dagens,B., Coquelin,A., Guillemot,I., Gaborit,F., Poingt,F., Renaud,M.: Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOAbased interferometric wavelength converter. Electron. Lett. 36 (22), 1863- 1864 (2000)
|
[19] |
Xiong,M., Lei,L., Ding,Y., Huang,B., Ou,H., Peucheret,C., Zhang,X.: All-optical 10 Gb/s AND logic gate in a silicon microring resonator. Opt. Express 21 (22), 25772- 25779 (2013)
|
[20] |
Rakshit,J.K., Roy,J.N., Chattopadhyay,T.: Design of micro-ring resonator based all-optical parity generator and checker circuit. Opt. Commun. 303, 30- 37 (2013)
|
[21] |
Liu,Y., Qin,F., Meng,Z.M., Zhou,F., Mao,Q.H., Li,Z.Y.: All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 19 (3), 1945- 1953 (2011)
|
[22] |
Husko,C., Vo,T.D., Corcoran,B., Li,J., Krauss,T.F., Eggleton,B.J.: Ultracompact all-optical XOR logic gate in a slowlight silicon photonic crystal waveguide. Opt. Express 19 (21), 20681- 20690 (2011)
|
[23] |
Rani,P., Kalra,Y., Sinha,R.K.: Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal. Opt. Commun. 374, 148- 155 (2016)
|
[24] |
Fu,Y., Hu,X., Gong,Q.: Silicon photonic crystal all-optical logic gates. Phys. Lett. Part A 377 (3-4), 329- 333 (2013)
|
[25] |
Birr,T., Zywietz,U., Chhantyal,P., Chichkov,B.N., Reinhardt,C.: Ultrafast surface plasmon-polariton logic gates and halfadder. Opt. Express 23 (25), 31755- 31765 (2015)
|
[26] |
Wei,H., Wang,Z., Tian,X., Käll,M., Xu,H.: Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2 (1), 387 (2011)
|
[27] |
Ye,Y., Xie,Y., Liu,Y., Wang,S., Zhang,J., Liu,Y.: Design of a compact logic device based on plasmon-induced transparency. IEEE Photon. Technol. Lett. 29 (8), 647- 650 (2017)
|
[28] |
Hou,J., Chen,L., Dong,W., Zhang,X.: 40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide. Opt. Express 24 (3), 2701- 2711 (2016)
|
[29] |
Yin,Z., Wu,J., Zang,J., Kong,D., Qiu,J., Shi,J., Li,W., Wei,S., Lin,J.: All-optical logic gate for XOR operation between 40-Gbaud QPSK tributaries in an ultra-short silicon nanowire. IEEE Photon. J. 6 (3), 4500307 (2014)
|
[30] |
Liang,T.K., Nunes,L.R., Tsuchiya,M., Abedin,K.S., Miyazaki,T., Van Thourhout,D., Bogaerts,W., Dumon,P., Baets,R., Tsang,H.K.: High speed logic gate using two-photon absorption in silicon waveguides. Opt. Commun. 265 (1), 171- 174 (2006)
|
[31] |
Gui,C., Wang,J.: Simultaneous optical half-adder and halfsubtracter using a single-slot waveguide. IEEE Photon. J. 5 (5), 6602010 (2013)
|
[32] |
Zhang,F., Zhang,L., Yang,L.: Directed logic circuits based on silicon microring resonators. Laser Optoelectronics Prog. 51 (11), 110004 (2014)
|
[33] |
Gostimirovic,D., Ye,W.N.: Ultracompact CMOS-compatible optical logic using carrier depletion in microdisk resonators. Sci. Rep. 7 (1), 12603 (2017)
|
[34] |
Winzer,P.J.: Modulation and multiplexing in optical communications. In: Proceedings of Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. IEEE, 2009: 1- 2
|
[35] |
Soref,R., De Leonardis,F., Ying,Z., Passaro,V.M.N., Chen,R.T.: Silicon-based group-IV OEO devices for gain, logic, and wavelength conversion. ACS Photon. 7 (3), 800- 811 (2020)
|
[36] |
Zhang,L., Ji,R., Jia,L., Yang,L., Zhou,P., Tian,Y., Chen,P., Lu,Y., Jiang,Z., Liu,Y., Fang,Q., Yu,M.: Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators. Opt. Lett. 35 (10), 1620- 1622 (2010)
|
[37] |
Xing,J., Li,Z., Zhou,P., Gong,Y., Yu,Y., Tan,M., Yu,J.: Compact silicon-on-insulator-based 2 × 2 Mach-Zehnder interferometer electro-optic switch with low crosstalk. Chin. Opt. Lett. 13 (6), 061301- 061304 (2015)
|
[38] |
Zhao,S., Lu,L., Zhou,L., Li,D., Guo,Z., Chen,J.: 16× 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters. Photon. Res. 4 (5), 202- 207 (2016)
|
[39] |
Gong,H., Chen,X., Qu,Y., Li,Q., Yan,M., Qiu,M.: Photothermal switching based on silicon Mach-Zehnder interferometer integrated with light absorber. IEEE Photon. J. 8 (2), 7802610 (2016)
|
[40] |
Qiao,L., Tang,W., Chu,T.: 32× 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 7 (1), 42306 (2017)
|
[41] |
Bogaerts,W., De Heyn,P., Van Vaerenbergh,T., De Vos,K., Selvaraja,S.K., Claes,T., Dumon,P., Bienstman,P., Van Thourhout,D., Baets,R.: Silicon microring resonators. Laser Photon. Rev. 6 (1), 47- 73 (2012)
|
[42] |
Yu,H., Ying,D., Pantouvaki,M., Van Campenhout,J., Absil,P., Hao,Y., Yang,J., Jiang,X.: Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express 22 (12), 15178- 15189 (2014)
|
[43] |
Wu,J., Cao,P., Pan,T., Yang,Y., Qiu,C., Tremblay,C., Su,Y.: Compact on-chip 1× 2 wavelength selective switch based on silicon microring resonator with nested pairs of subrings. Photon. Res. 3 (1), 9- 14 (2015)
|
[44] |
Cheng,Q., Dai,L.Y., Abrams,N.C., Hung,Y.H., Morrissey,P.E., Glick,M., O’Brien,P., Bergman,K.: Ultralow-crosstalk, strictly non-blocking microring-based optical switch. Photon. Res. 7 (2), 155- 161 (2019)
|
[45] |
Song,J., Fang,Q., Luo,X., Cai,H., Liow,T.Y., Yu,M.B., Lo,G.Q., Kwong,D.L.: Thermo-optical tunable planar ridge microdisk resonator in silicon-on-insulator. Opt. Express 19 (12), 11220- 11227 (2011)
|
[46] |
Yu,L., Yin,Y., Shi,Y., Dai,D., He,S.: Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica 3 (2), 159- 166 (2016)
|
[47] |
Gostimirovic,D., De Leonardis,F., Soref,R., Passaro,V.M.N., Ye,W.N.: Ultrafast electro-optical disk modulators for logic, communications, optical repeaters, and wavelength converters. Opt. Express 28 (17), 24874- 24888 (2020)
|
[48] |
Soltani,M., Yegnanarayanan,S., Adibi,A.: Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Opt. Express 15 (8), 4694- 4704 (2007)
|
[49] |
Deng,Q., Liu,L., Zhang,R., Li,X., Michel,J., Zhou,Z.: Athermal and flat-topped silicon Mach-Zehnder filters. Opt. Express 24 (26), 29577- 29582 (2016)
|
[50] |
Chen,S., Shi,Y., He,S., Dai,D.: Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt. Lett. 41 (4), 836- 839 (2016)
|
[51] |
Long,Y., Wang,J.: Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator. Opt. Express 23 (14), 17739- 17750 (2015)
|
[52] |
Li,J., Yang,S., Chen,H., Chen,M.: Subwavelength hole defect assisted microring resonator for a compact rectangular filter. Opt. Lett. 45 (11), 3123- 3126 (2020)
|
[53] |
Zhang,Y., Hu,X., Chen,D., Wang,L., Li,M., Feng,P., Xiao,X., Yu,S.: Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide. Opt. Lett. 43 (7), 1586- 1589 (2018)
|
[54] |
Watts,M.R., Trotter,D.C., Young,R.W., Lentine,A.L.: Ultralow power silicon microdisk modulators and switches. In: Proceedings of 5th IEEE International Conference on Group IV Photonics. Sorrento: IEEE, 2008: 4- 6
|
[55] |
Xu,K., Chen,Y., Li,C., Chen,X., Chen,Z., Wong,C.Y., Tsang,H.K.: An ultracompact OSNR monitor based on an integrated silicon microdisk resonator. IEEE Photon. J. 4 (5), 1365- 1371 (2012)
|
[56] |
Singh,B.R., Rawal,S.: Photonic-crystal-based all-optical NOT logic gate. J. Opt. Soc. Am. A 32 (12), 2260- 2263 (2015)
|
[57] |
Han,B., Yu,J., Wang,W., Zhang,L., Hu,H., Yang,E.: Experimental study on all-optical half-adder based on semiconductor optical amplifier. Optoelectron. Lett. 5 (3), 161- 164 (2009)
|
[58] |
Hall,K.L., Donnelly,J.P., Groves,S.H., Fennelly,C.I., Bailey,R.J., Napoleone,A.: 40-Gbit/s all-optical circulating shift register with an inverter. Opt. Lett. 22 (19), 1479- 1481 (1997)
|
[59] |
Dimitriadou,E., Zoiros,K.E.: On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifierbased Mach-Zehnder interferometer. Opt. Laser Technol. 44 (3), 600- 607 (2012)
|
[60] |
Zhang,L., Ji,R., Tian,Y., Yang,L., Zhou,P., Lu,Y., Zhu,W., Liu,Y., Jia,L., Fang,Q., Yu,M.: Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators. Opt. Express 19 (7), 6524- 6540 (2011)
|
[61] |
Zhang,L., Ding,J., Tian,Y., Ji,R., Yang,L., Chen,H., Zhou,P., Lu,Y., Zhu,W., Min,R.: Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations. Opt. Express 20 (11), 11605- 11614 (2012)
|
[62] |
Tian,Y., Zhang,L., Yang,L.: Directed XOR/XNOR logic gates using U-to-U waveguides and two microring resonators. IEEE Photon. Technol. Lett. 25 (1), 18- 21 (2013)
|
[63] |
Zhu,W., Tian,Y., Zhang,L., Yang,L.: Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators. IEEE Photon. Technol. Lett. 25 (14), 1305- 1308 (2013)
|
[64] |
Tian,Y., Zhao,Y., Chen,W., Guo,A., Li,D., Zhao,G., Liu,Z., Xiao,H., Liu,G., Yang,J.: Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators. Opt. Express 23 (20), 26342- 26355 (2015)
|
[65] |
Tian,Y., Li,D., Liu,Z., Xiao,H., Zhao,G., Yang,J., Zhao,Y., Han,G., Gao,X.: Simulation and demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators. IEEE Photon. J. 8 (2), 7802211 (2016)
|
[66] |
Tian,Y., Zhang,L., Ji,R., Yang,L., Zhou,P., Chen,H., Ding,J., Zhu,W., Lu,Y., Jia,L., Fang,Q., Yu,M.: Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators. Opt. Lett. 36 (9), 1650- 1652 (2011)
|
[67] |
Tian,Y., Zhang,L., Yang,L.: Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators. Opt. Express 20 (15), 16794- 16800 (2012)
|
[68] |
Zhou,P., Zhang,L., Tian,Y., Yang,L.: 10 GHz electro-optical OR/NOR directed logic device based on silicon micro-ring resonators. Opt. Lett. 39 (7), 1937- 1940 (2014)
|
[69] |
Tian,Y., Zhang,L., Xu,Q., Yang,L.: XOR/XNOR directed logic circuit based on coupled-resonator-induced transparency. Laser Photon. Rev. 7 (1), 109- 113 (2013)
|
[70] |
Xu,Q., Sandhu,S., Povinelli,M.L., Shakya,J., Fan,S., Lipson,M.: Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96 (12), 123901 (2006)
|
[71] |
Ding,J., Yang,L., Chen,Q., Zhang,L., Zhou,P.: Demonstration of a directed XNOR/XOR optical logic circuit based on silicon Mach-Zehnder interferometer. Optics Communications 395, 183- 187 (2017)
|
[72] |
Xiao,H., Han,X., Jiang,Y., Ren,G., Mitchell,A., Gao,D., Yang,J., Tian,Y.: Demonstration of various optical directed logic operations by using an integrated photonic circuit. Opt. Lett. 46 (10), 2457- 2460 (2021)
|
[73] |
Tian,Y., Zhang,L., Ji,R., Yang,L., Zhou,P., Ding,J., Chen,H., Zhu,W., Lu,Y., Fang,Q., Jia,L., Yu,M.: Demonstration of a directed optical decoder using two cascaded microring resonators. Opt. Lett. 36 (17), 3314- 3316 (2011)
|
[74] |
Chen,Q., Zhang,F., Zhang,L., Tian,Y., Zhou,P., Ding,J., Yang,L.: 1 Gbps directed optical decoder based on two cascaded microring resonators. Opt. Lett. 39 (14), 4255- 4258 (2014)
|
[75] |
Tian,Y., Zhang,L., Ji,R., Yang,L., Xu,Q.: Demonstration of a directed optical encoder using microring-resonator-based optical switches. Opt. Lett. 36 (19), 3795- 3797 (2011)
|
[76] |
Xiao,H., Li,D., Liu,Z., Han,X., Chen,W., Zhao,T., Tian,Y., Yang,J.: Experimental realization of a CMOS-compatible optical directed priority encoder using cascaded micro-ring resonators. Nanophotonics 7 (4), 727- 733 (2018)
|
[77] |
Tian,Y., Yang,L., Zhang,L., Ji,R., Ding,J., Zhou,P., Zhu,W., Lu,Y.: Directed optical half-adder based on two cascaded microring resonators. IEEE Photon. Technol. Lett. 24 (8), 643- 645 (2012)
|
[78] |
Wu,X., Deng,L., Meng,Y., Yang,J., Tian,Y.: Demonstration of a silicon photonic circuit for half-add operations using cascaded microring resonators. IEEE Photon. J. 9 (1), 2700209 (2016)
|
[79] |
Liu,Z., Zhao,Y., Xiao,H., Deng,L., Meng,Y., Guo,X., Liu,G., Tian,Y., Yang,J.: Demonstration of an optical directed halfsubtracter using integrated silicon photonic circuits. Appl. Opt. 57 (10), 2564- 2569 (2018)
|
[80] |
Yang,L., Guo,C., Zhu,W., Zhang,L., Sun,C.: Demonstration of a directed optical comparator based on two cascaded microring resonators. IEEE Photon. Technol. Lett. 27 (8), 809- 812 (2015)
|
[81] |
Tian,Y., Xiao,H., Wu,X., Liu,Z., Meng,Y., Deng,L., Guo,X., Liu,G., Yang,J.: Experimental realization of an optical digital comparator using silicon microring resonators. Nanophotonics 7 (3), 669- 675 (2018)
|
[82] |
Law,F.K., Uddin,M.R., Hashim,H., Won,Y.H.: Demonstration of photonic micro-ring resonator based digital bit magnitude comparator. Opt. Quant. Electron. 51 (1), 1- 13 (2019)
|
[83] |
Liu,Z., Wu,X., Xiao,H., Han,X., Chen,W., Liao,M., Zhao,T., Jia,H., Yang,J., Tian,Y.: On-chip optical parity checker using silicon photonic integrated circuits. Nanophotonics 7 (12), 1939- 1948 (2018)
|
[84] |
Tian,Y., Liu,Z., Ying,T., Xiao,H., Meng,Y., Deng,L., Zhao,Y., Guo,A., Liao,M., Liu,G., Yang,J.: Experimental demonstration of an optical Feynman gate for reversible logic operation using silicon micro-ring resonators. Nanophotonics 7 (1), 333- 337 (2018)
|
[85] |
Reed,G.T., Mashanovich,G., Gardes,F.Y., Thomson,D.J.: Silicon optical modulators. Nat. Photon. 4 (8), 518- 526 (2010)
|
[86] |
Xiao,X., Xu,H., Li,X., Li,Z., Chu,T., Yu,Y., Yu,J.: Highspeed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt. Express 21 (4), 4116- 4125 (2013)
|
[87] |
Chen,W., Yang,L., Wang,P., Zhang,Y., Zhou,L., Yang,T., Wang,Y., Yang,J.: Electro-optical logic gates based on graphene-silicon waveguides. Opt. Commun. 372, 85- 90 (2016)
|
[88] |
Zivarian,H., Zarifkar,A.: Compact electro-optical programmable logic device based on graphene-silicon switches. Photon. Netw. Commun. 38 (2), 219- 230 (2019)
|
[89] |
Shu,H., Jin,M., Tao,Y., Wang,X.: Graphene-based silicon modulators. Front. Inf. Technol. Electronic Eng. 20 (4), 458- 471 (2019)
|
[90] |
Yuan,S., Hu,C., Pan,A., Ding,Y., Wang,X., Qu,Z., Wei,J., Liu,Y., Zeng,C., Xia,J.: Photonic devices based on thinfilm lithium niobate on insulator. J. Semicond. 42 (4), 041304 (2021)
|
[91] |
Huang,X., Liu,Y., Li,Z., Guan,H., Wei,Q., Tan,M., Li,Z.: 40 GHz high-efficiency Michelson interferometer modulator on a silicon-rich nitride and thin-film lithium niobate hybrid platform. Opt. Lett. 46 (12), 2811- 2814 (2021)
|
[92] |
Wang,J., Xu,S., Chen,J., Zou,W.: A heterogeneous silicon on lithium niobate modulator for ultra-compact and high-performance photonic integrated circuits. IEEE Photonics J. 13 (1), 4900112 (2021)
|
[93] |
Xu,Q., Soref,R.: Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Express 19 (6), 5244- 5259 (2011)
|
[94] |
Qiu,C., Ye,X., Soref,R., Yang,L., Xu,Q.: Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits. Opt. Lett. 37 (19), 3942- 3944 (2012)
|
[95] |
Qiu,C., Gao,W., Soref,R., Robinson,J.T., Xu,Q.: Reconfigurable electro-optical directed-logic circuit using carrierdepletion micro-ring resonators. Opt. Lett. 39 (24), 6767- 6770 (2014)
|
[96] |
Qi,Y., Qiu,C., Gao,W., Zhong,X., Su,Y.: Silicon reconfigurable electro-optical logic circuit enabled by a single-wavelength light input. IEEE Photon. Technol. Lett. 31 (6), 435- 438 (2019)
|
[97] |
Tian,Y., Zhao,G., Liu,Z., Guo,A., Xiao,H., Wu,X., Meng,Y., Deng,L., Guo,X., Liu,G., Yang,J.: Reconfigurable electro-optic logic circuits using microring resonator-based optical switch array. IEEE Photon. J. 8 (2), 7801908 (2016)
|
[98] |
Tian,Y., Liu,Z., Xiao,H., Zhao,G., Liu,G., Yang,J., Ding,J., Zhang,L., Yang,L.: Experimental demonstration of a reconfigurable electro-optic directed logic circuit using cascaded carrierinjection micro-ring resonators. Sci. Rep. 7 (1), 6410 (2017)
|
[99] |
Ying,Z., Feng,C., Zhao,Z., Soref,R., Pan,D.Z., Chen,R.T.: Integrated multi-operand electro-optic logic gates for optical computing. Appl. Phys. Lett. 115 (17), 171104 (2019)
|
[100] |
Ying,Z., Wang,Z., Zhao,Z., Dhar,S., Pan,D.Z., Soref,R., Chen,R.T.: Comparison of microrings and microdisks for highspeed optical modulation in silicon photonics. Appl. Phys. Lett. 112 (11), 111108 (2018)
|
[101] |
Feng,C., Ying,Z., Zhao,Z., Mital,R., Pan,D.Z., Chen,R.T.: Analysis of microresonator-based logic gate for high-speed optical computing in integrated photonics. IEEE J. Sel. Top. Quantum Electron. 26 (2), 8302208 (2019)
|
[102] |
Ying,Z., Dhar,S., Zhao,Z., Feng,C., Mital,R., Chung,C., Pan,D.Z., Soref,R.A., Chen,R.T.: Electro-optic ripple-carry adder in integrated silicon photonics for optical computing. IEEE J. Sel. Top. Quantum Electron. 24 (6), 7600310 (2018)
|
[103] |
Ying,Z., Wang,Z., Zhao,Z., Dhar,S., Pan,D.Z., Soref,R., Chen,R.T.: Silicon microdisk-based full adders for optical computing. Opt. Lett. 43 (5), 983- 986 (2018)
|
[104] |
Ying,Z., Feng,C., Zhao,Z., Dhar,S., Dalir,H., Gu,J., Cheng,Y., Soref,R., Pan,D.Z., Chen,R.T.: Electronic-photonic arithmetic logic unit for high-speed computing. Nat. Commun. 11 (1), 2154 (2020)
|
[105] |
Bogaerts,W., Pérez,D., Capmany,J., Miller,D.A.B., Poon,J., Englund,D., Morichetti,F., Melloni,A.: Programmable photonic circuits. Nature 586 (7828), 207- 216 (2020)
|
[106] |
Soref,R., De Leonardis,F., Passaro,V.M.N.: Compact resonant 2 × 2 crossbar switch using three coupled waveguides with a central nanobeam. Opt. Express 29 (6), 8751- 8762 (2021)
|
[107] |
Cheng,Z., Dong,J., Zhang,X.: Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Opt. Lett. 45 (8), 2363- 2366 (2020)
|
[108] |
Shamir,J.: Parallel optical logic operations on reversible networks. Opt. Commun. 291, 133- 137 (2013)
|
[109] |
Miller,D.A.B.: Self-configuring universal linear optical component. Photon. Res. 1 (1), 1- 15 (2013)
|
[110] |
Annoni,A., Guglielmi,E., Carminati,M., Ferrari,G., Sampietro,M., Miller,D.A.B., Melloni,A., Morichetti,F.: Unscrambling light-automatically undoing strong mixing between modes. Light, Sci. Appl. 6 (12), e17110 (2017)
|
[111] |
Zhou,H., Zhao,Y., Wang,X., Gao,D., Dong,J., Zhang,X.: Selfconfiguring and reconfigurable silicon photonic signal processor. ACS Photonics 7 (3), 792- 799 (2020)
|
[112] |
Zhou,H., Zhao,Y., Xu,G., Wang,X., Tan,Z., Dong,J., Zhang,X.: Chip-scale optical matrix computation for PageRank algorithm. IEEE J. Sel. Top. Quantum Electron. 26 (2), 8300910 (2020)
|
[113] |
Xiang,S., Han,Y., Song,Z., Guo,X., Zhang,Y., Ren,Z., Wang,S., Ma,Y., Zou,W., Ma,B., Xu,S., Dong,J., Zhou,H., Ren,Q., Deng,T., Liu,Y., Han,G., Hao,Y.: A review: photonics devices, architectures, and algorithms for optical neural computing. J. Semicond. 42 (2), 023105 (2021)
|
[114] |
Xu,S., Wang,J., Wang,R., Chen,J., Zou,W.: High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt. Express 27 (14), 19778- 19787 (2019)
|
[115] |
Capmany,J., Pérez,D.: Programmable integrated photonics. Oxford University Press, Oxford (2020)
|
[116] |
Bai,B., Shu,H., Wang,X., Zou,W.: Towards silicon photonic neural networks for artificial intelligence. Sci. China Inf. Sci. 63 (6), 160406 (2020)
|
/
〈 | 〉 |