A small microring array that performs large complex-valued matrix-vector multiplication

Junwei Cheng, Yuhe Zhao, Wenkai Zhang, Hailong Zhou, Dongmei Huang, Qing Zhu, Yuhao Guo, Bo Xu, Jianji Dong, Xinliang Zhang

PDF(2216 KB)
PDF(2216 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (2) : 15. DOI: 10.1007/s12200-022-00009-4
RESEARCH ARTICLE
RESEARCH ARTICLE

A small microring array that performs large complex-valued matrix-vector multiplication

Author information +
History +

Abstract

As an important computing operation, photonic matrix–vector multiplication is widely used in photonic neutral networks and signal processing. However, conventional incoherent matrix–vector multiplication focuses on real-valued operations, which cannot work well in complex-valued neural networks and discrete Fourier transform. In this paper, we propose a systematic solution to extend the matrix computation of microring arrays from the real-valued field to the complex-valued field, and from small-scale (i.e., 4 × 4) to large-scale matrix computation (i.e., 16 × 16). Combining matrix decomposition and matrix partition, our photonic complex matrix–vector multiplier chip can support arbitrary large-scale and complex-valued matrix computation. We further demonstrate Walsh-Hardmard transform, discrete cosine transform, discrete Fourier transform, and image convolutional processing. Our scheme provides a path towards breaking the limits of complex-valued computing accelerator in conventional incoherent optical architecture. More importantly, our results reveal that an integrated photonic platform is of huge potential for large-scale, complex-valued, artificial intelligence computing and signal processing.

Graphical abstract

Keywords

Photonic matrix–vector multiplication / Complex-valued computing / Microring array / Signal/image processing

Cite this article

Download citation ▾
Junwei Cheng, Yuhe Zhao, Wenkai Zhang, Hailong Zhou, Dongmei Huang, Qing Zhu, Yuhao Guo, Bo Xu, Jianji Dong, Xinliang Zhang. A small microring array that performs large complex-valued matrix-vector multiplication. Front. Optoelectron., 2022, 15(2): 15 https://doi.org/10.1007/s12200-022-00009-4

References

[1]
Shi, W. , Caballero, J. , Huszar, F. , Totz, J. , Aitken, A.P. , Bishop, R. , Rueckert, D. , Wang, Z. : Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Proc. CVPR 1874- 1883 (2016)
[2]
Li, X. , Zhang, G. , Huang, H.H. , Wang, Z. , Zheng, W. : Performance analysis of GPU-based convolutional neural networks. Proc. ICPP 67- 76 (2016)
[3]
Li, H. , Lin, Z. , Shen, X. , Brandt, J. , Hua, G. : A convolutional neural network cascade for face detection. Proc. CVPR 5325- 5334 (2015)
[4]
Kitayama, K.I. , Notomi, M. , Naruse, M. , Inoue, K. , Kawakami, S. , Uchida, A. : Novel frontier of photonics for data processing— photonic accelerator. APL Photonics 4 (9), 090901 (2019)
[5]
Krizhevsky, A. , Sutskever, I. , Hinton, G.E. : ImageNet classification with deep convolutional neural networks. Commun. ACM 60 (6), 84- 90 (2017)
[6]
LeCun, Y. , Bengio, Y. , Hinton, G. : Deep learning. Nature 521 (7553), 436- 444 (2015)
[7]
Xu, X. , Tan, M. , Corcoran, B. , Wu, J. , Boes, A. , Nguyen, T.G. , Chu, S.T. , Little, B.E. , Hicks, D.G. , Morandotti, R. , Mitchell, A. , Moss, D.J. : 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589 (7840), 44- 51 (2021)
[8]
Wu, C. , Yu, H. , Lee, S. , Peng, R. , Takeuchi, I. , Li, M. : Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12 (1), 96 (2021)
[9]
Feldmann, J. , Youngblood, N. , Karpov, M. , Gehring, H. , Li, X. , Stappers, M. , Le Gallo, M. , Fu, X. , Lukashchuk, A. , Raja, A.S. , Liu, J. , Wright, C.D. , Sebastian, A. , Kippenberg, T.J. , Pernice, W.H.P. , Bhaskaran, H. : Parallel convolutional processing using an integrated photonic tensor core. Nature 589 (7840), 52- 58 (2021)
[10]
Ríos, C. , Youngblood, N. , Cheng, Z. , Le Gallo, M. , Pernice, W.H.P. , Wright, C.D. , Sebastian, A. , Bhaskaran, H. : In-memory computing on a photonic platform. Sci. Adv. 5 (2), 5759 (2019)
[11]
Feldmann, J. , Youngblood, N. , Wright, C.D. , Bhaskaran, H. , Pernice, W.H.P. : All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569 (7755), 208- 214 (2019)
[12]
Lin, X. , Rivenson, Y. , Yardimci, N.T. , Veli, M. , Luo, Y. , Jarrahi, M. , Ozcan, A. : All-optical machine learning using diffractive deep neural networks. Science 361 (6406), 1004- 1008 (2018)
[13]
Zhou, T. , Lin, X. , Wu, J. , Chen, Y. , Xie, H. , Li, Y. , Fan, J. , Wu, H. , Fang, L. , Dai, Q. : Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 15 (5), 367- 373 (2021)
[14]
Zhu, W. , Zhang, L. , Lu, Y. , Zhou, P. , Yang, L. : Design and experimental verification for optical module of optical vector-matrix multiplier. Appl. Opt. 52 (18), 4412- 4418 (2013)
[15]
Habiby, S.F. , Collins Jr, S.A. : Implementation of a fast digital optical matrix-vector multiplier using a holographic look-up table and residue arithmetic. Appl. Opt. 26 (21), 4639- 4652 (1987)
[16]
Bocker, R.P. , Clayton, S.R. , Bromley, K. : Electrooptical matrix multiplication using the twos complement arithmetic for improved accuracy. Appl. Opt. 22 (13), 2019 (1983)
[17]
Goodman, J.W. , Dias, A.R. , Woody, L.M. : Fully parallel, highspeed incoherent optical method for performing discrete Fourier transforms. Opt. Lett. 2 (1), 1- 3 (1978)
[18]
Hong, J. , Yeh, P. : Photorefractive parallel matrix-matrix multiplier. Opt. Lett. 16 (17), 1343- 1345 (1991)
[19]
Cartwright, S. : New optical matrix-vector multiplier. Appl. Opt. 23 (11), 1683- 1684 (1984)
[20]
Athale, R.A. , Collins, W.C. : Optical matrix-matrix multiplier based on outer product decomposition. Appl. Opt. 21 (12), 2089- 2090 (1982)
[21]
Mukhopadhyay, S. , Das, D.N. , Das, P.P. , Ghosh, P. : Implementation of all-optical digital matrix multiplication scheme with nonlinear material. Opt. Eng. (Redondo Beach, Calif.) 40 (9), 1998- 2002 (2001)
[22]
Liu, B. , Liu, L.R. , Shao, L. , Chen, H.Q. : Matrix-vector multiplication in a photorefractive crystal. Opt. Commun. 146 (1-6), 34- 38 (1998)
[23]
Gu, C. , Campbell, S. , Yeh, P. : Matrix-matrix multiplication by using grating degeneracy in photorefractive media. Opt. Lett. 18 (2), 146- 148 (1993)
[24]
Nitta, T. : Orthogonality of decision boundaries in complexvalued neural networks. Neural Comput. 16 (1), 73- 97 (2004)
[25]
Zhou, H. , Zhao, Y. , Xu, G. , Wang, X. , Tan, Z. , Dong, J. , Zhang, X. : Chip-scale optical matrix computation for pagerank algorithm. IEEE J. Sel. Top. Quantum Electron. 26 (2), 1- 10 (2020)
[26]
Bogaerts, W. , Pérez, D. , Capmany, J. , Miller, D.A.B. , Poon, J. , Englund, D. , Morichetti, F. , Melloni, A. : Programmable photonic circuits. Nature 586 (7828), 207- 216 (2020)
[27]
Clements, W.R. , Humphreys, P.C. , Metcalf, B.J. , Kolthammer, W.S. , Walsmley, I.A. : Optimal design for universal multiport interferometers. Optica 3 (12), 1460- 1465 (2016)
[28]
Miller, D.A.B. : Self-configuring universal linear optical component. Photonics Res. 1 (1), 1- 15 (2013)
[29]
Mennea, P.L. , Clements, W.R. , Smith, D.H. , Gates, J.C. , Metcalf, B.J. , Bannerman, R.H.S. , Burgwal, R. , Renema, J.J. , Kolthammer, W.S. , Walmsley, I.A. , Smith, P.G.R. : Modular linear optical circuits. Optica 5 (9), 1087- 1090 (2018)
[30]
Carolan, J. , Harrold, C. , Sparrow, C. , Martín-López, E. , Russell, N.J. , Silverstone, J.W. , Shadbolt, P.J. , Matsuda, N. , Oguma, M. , Itoh, M. , Marshall, G.D. , Thompson, M.G. , Matthews, J.C.F. , Hashimoto, T. , O’Brien, J.L. , Laing, A. : Universal linear optics. Science 349 (6249), 711- 716 (2015)
[31]
Zhou, H. , Zhao, Y. , Wang, X. , Gao, D. , Dong, J. , Zhang, X. : Self-configuring and reconfigurable silicon photonic signal processor. ACS Photonics 7 (3), 792- 799 (2020)
[32]
Annoni, A. , Guglielmi, E. , Carminati, M. , Ferrari, G. , Sampietro, M. , Miller, D.A.B. , Melloni, A. , Morichetti, F. : Unscrambling light-automatically undoing strong mixing between modes. Light Sci Appl. 6 (12), e17110 (2017)
[33]
Zhou, H. , Zhao, Y. , Wei, Y. , Li, F. , Dong, J. , Zhang, X. : Allin-one silicon photonic polarization processor. Nanophotonics 8 (12), 2257- 2267 (2019)
[34]
Shen, Y. , Harris, N.C. , Skirlo, S. , Prabhu, M. , Baehr-Jones, T. , Hochberg, M. , Sun, X. , Zhao, S. , Larochelle, H. , Englund, D. , Soljačić, M. : Deep learning with coherent nanophotonic circuits. Nat. Photonics 11 (7), 441- 446 (2017)
[35]
Tait, A.N. , de Lima, T.F. , Zhou, E. , Wu, A.X. , Nahmias, M.A. , Shastri, B.J. , Prucnal, P.R. : Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7 (1), 7430 (2017)
[36]
Yang, L. , Zhang, L. , Ji, R. : On-chip optical matrix-vector multiplier. Optics and Photonics for Information Processing Vii (2013)
[37]
Miscuglio, M. , Sorger, V.J. : Photonic tensor cores for machine learning. Appl. Phys. Rev. 7 (3), 031404 (2020)
[38]
Zhao, Y. , Wang, X. , Gao, D. , Dong, J. , Zhang, X. : On-chip programmable pulse processor employing cascaded MZI-MRR structure. Front. Optoelectron. 12 (2), 148- 156 (2019)
[39]
Roy, A.B. , Dey, D. , Mohanty, B. , Banerjee, D. : Comparison of FFT, DCT, DWT, WHT compression techniques on electrocardiogram and photoplethysmography signals. IJCA Special Issue on International Conference on Computing, Communication and Sensor Network CCSN, 2012. 6- 11
[40]
Rahardja, S. , Ser, W. , Lin, Z.N. : UCHT-based complex sequences for asynchronous CDMA system. IEEE Trans. Commun. 51 (4), 618- 626 (2003)
[41]
Andrushia, A.D. , Thangarjan, R. : Saliency-based image compression using walsh-hadamard transform (WHT), pp. 21-42. Springer, Biologically rationalized computing techniques for image processing applications (2018)
[42]
Strang, G. : The discrete cosine transform. SIAM Rev. 41 (1), 135- 147 (1999)
[43]
Oppenheim A.V. , Schafer, R. W. , Buck, J. R. : Discrete-TimeSignal Processing. Norwood: Pearson Education India (1999)

RIGHTS & PERMISSIONS

2022 The Author(s)
AI Summary AI Mindmap
PDF(2216 KB)

Accesses

Citations

Detail

Sections
Recommended

/