Collections

Additive Manufacturing
The main objective of this Special Column is to bring together the new and innovative ideas, experiences and research results from researchers and practitioners on all aspects of Additive Manufacturing.
Publication years
Loading ...
Article types
Loading ...
  • Select all
  • RESEARCH ARTICLE
    Lianzhong ZHANG, Dichen LI, Shenping YAN, Ruidong XIE, Hongliang QU
    Frontiers of Mechanical Engineering, 2018, 13(4): 513-519. https://doi.org/10.1007/s11465-018-0503-0

    The mechanical properties of 316L stainless steel repaired with Fe314 under different temperatures and humidities without inert gas protection were studied. Results indicated favorable compatibility between Fe314 and 316L stainless steel. The average yield strength, tensile strength, and sectional contraction percentage were higher in repaired samples than in 316L stainless steel, whereas the elongation rate was slightly lower. The different conditions of humiture environment on the repair sample exerted minimal influence on tensile and yield strengths. The Fe314 cladding layer was mainly composed of equiaxed grains and mixed with randomly oriented columnar crystal and tiny pores or impurities in the tissue. Results indicated that the hardness value of Fe314 cladding layer under different humiture environments ranged within 419–451.1 HV0.2. The field humiture environment also showed minimal impact on the average hardness of Fe314 cladding layers. Furthermore, 316L stainless steel can be repaired through laser cladding by using Fe314 powder without inert gas protection under different temperatures and humidity environments.

  • RESEARCH ARTICLE
    Omotoyosi H. FAMODIMU, Mark STANFORD, Chike F. ODUOZA, Lijuan ZHANG
    Frontiers of Mechanical Engineering, 2018, 13(4): 520-527. https://doi.org/10.1007/s11465-018-0521-y

    Laser melting of aluminium alloy—AlSi10Mg has increasingly been used to create specialised products in various industrial applications, however, research on utilising laser melting of aluminium matrix composites in replacing specialised parts have been slow on the uptake. This has been attributed to the complexity of the laser melting process, metal/ceramic feedstock for the process and the reaction of the feedstock material to the laser. Thus, an understanding of the process, material microstructure and mechanical properties is important for its adoption as a manufacturing route of aluminium metal matrix composites. The effects of several parameters of the laser melting process on the mechanical blended composite were thus investigated in this research. This included single track formations of the matrix alloy and the composite alloyed with 5% and 10% respectively for their reaction to laser melting and the fabrication of density blocks to investigate the relative density and porosity over different scan speeds. The results from these experiments were utilised in determining a process window in fabricating near-fully dense parts.

  • REVIEW ARTICLE
    Lei WANG, Zi-Han WANG, Yan-Hao YU, Hong-Bo SUN
    Frontiers of Mechanical Engineering, 2018, 13(4): 493-503. https://doi.org/10.1007/s11465-018-0507-9

    Functional periodic structures have attracted significant interest due to their natural capabilities in regulating surface energy, surface effective refractive index, and diffraction. Several technologies are used for the fabrication of these functional structures. The laser interference technique in particular has received attention because of its simplicity, low cost, and high-efficiency fabrication of large-area, micro/nanometer-scale, and periodically patterned structures in air conditions. Here, we reviewed the work on laser interference fabrication of large-area functional periodic structures for antireflection, self-cleaning, and superhydrophobicity based on our past and current research. For the common cases, four-beam interference and multi-exposure of two-beam interference were emphasized for their setup, structure diversity, and various applications for antireflection, self-cleaning, and superhydrophobicity. The relations between multi-beam interference and multi-exposure of two-beam interference were compared theoretically and experimentally. Nanostructures as a template for growing nanocrystals were also shown to present future possible applications in surface chemical control. Perspectives on future directions and applications for laser interference were presented.

  • RESEARCH ARTICLE
    Javaid BUTT, Dominic Adaoiza ONIMOWO, Mohammed GOHRABIAN, Tinku SHARMA, Hassan SHIRVANI
    Frontiers of Mechanical Engineering, 2018, 13(4): 528-534. https://doi.org/10.1007/s11465-018-0502-1

    3D printing has opened new horizons for the manufacturing industry in general, and 3D printers have become the tools for technological advancements. There is a huge divide between the pricing of industrial and desktop 3D printers with the former being on the expensive side capable of producing excellent quality products and latter being on the low-cost side with moderate quality results. However, there is a larger room for improvements and enhancements for the desktop systems as compared to the industrial ones. In this paper, a desktop 3D printer called Prusa Mendel i2 has been modified and integrated with an additional extruder so that the system can work with dual extruders and produce bespoke electronic circuits. The communication between the two extruders has been established by making use of the In-Chip Serial Programming port on the Arduino Uno controlling the printer. The biggest challenge is to control the flow of electric paint (to be dispensed by the new extruder) and CFD (Computational Fluid Dynamics) analysis has been carried out to ascertain the optimal conditions for proper dispensing. The final product is a customised electronic circuit with the base of plastic (from the 3D printer’s extruder) and electronic paint (from the additional extruder) properly dispensed to create a live circuit on a plastic platform. This low-cost enhancement to a desktop 3D printer can provide a new prospect to produce multiple material parts where the additional extruder can be filled with any material that can be properly dispensed from its nozzle.

  • REVIEW ARTICLE
    Hadi MIYANAJI, Morgan ORTH, Junaid Muhammad AKBAR, Li YANG
    Frontiers of Mechanical Engineering, 2018, 13(4): 504-512. https://doi.org/10.1007/s11465-018-0508-8

    Originally developed decades ago, the binder jetting additive manufacturing (BJ-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compatibility and technological expandability. However, the adoption of BJ-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for BJ-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in-process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.

  • REVIEW ARTICLE
    Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU
    Frontiers of Mechanical Engineering, 2018, 13(4): 482-492. https://doi.org/10.1007/s11465-018-0505-y

    This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the process-structure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a high-efficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.