Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system

Hua ZHAO, Jihong ZHU, Shangqin YUAN, Shaoying LI, Weihong ZHANG

PDF(7846 KB)
PDF(7846 KB)
Front. Mech. Eng. ›› 2023, Vol. 18 ›› Issue (2) : 29. DOI: 10.1007/s11465-022-0745-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system

Author information +
History +

Abstract

To fully utilize the in-situ resources on the moon to facilitate the establishment of a lunar habitat is significant to realize the long-term residence of mankind on the moon and the deep space exploration in the future. Thus, intensive research works have been conducted to develop types of 3D printing approach to adapt to the extreme environment and utilize the lunar regolith for in-situ construction. However, the in-situ 3D printing using raw lunar regolith consumes extremely high energy and time. In this work, we proposed a cost-effective melting extrusion system for lunar regolith-based composite printing, and engineering thermoplastic powders are employed as a bonding agent for lunar regolith composite. The high-performance nylon and lunar regolith are uniformly pre-mixed in powder form with different weight fractions. The high-pressure extrusion system is helpful to enhance the interface affinity of polymer binders with lunar regolith as well as maximize the loading ratio of in-situ resources of lunar regolith. Mechanical properties such as tensile strength, elastic modulus, and Poisson’s ratio of the printed specimens were evaluated systematically. Especially, the impact performance was emphasized to improve the resistance of the meteorite impact on the moon. The maximum tensile strength and impact toughness reach 36.2 MPa and 5.15 kJ/m2, respectively. High-pressure melt extrusion for lunar regolith composite can increase the effective loading fraction up to 80 wt.% and relatively easily adapt to extreme conditions for in-situ manufacturing.

Graphical abstract

Keywords

in-situ resource utilization / melt extrusion molding / lunar regolith-based composites / mechanical properties / additive manufacturing

Cite this article

Download citation ▾
Hua ZHAO, Jihong ZHU, Shangqin YUAN, Shaoying LI, Weihong ZHANG. Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system. Front. Mech. Eng., 2023, 18(2): 29 https://doi.org/10.1007/s11465-022-0745-8

References

[1]
Wu W R, Yu D Y. Development of deep space exploration and its future key technologies. Journal of Deep Space Exploration, 2014, 1(1): 5–17 (in Chinese)
[2]
Wu W R, Liu J Z, Tang Y H, Yu D Y, Yu G B, Zhang Z. China lunar exploration program. Journal of Deep Space Exploration, 2019, 6(5): 405–416 (in Chinese)
[3]
Matsumoto K, Kamimori N, Takizawa Y, Kato M, Oda M, Wakabayashi S, Kawamoto S, Okada T, Iwata T, Ohtake M. Japanese lunar exploration long-term plan. Acta Astronautica, 2006, 59(1–5): 68–76
CrossRef Google scholar
[4]
Braun M , Gollins N , Trivino V , Hosseini S , Schonenborg R , Landgraf M . Human lunar return: an analysis of human lunar exploration scenarios within the upcoming decade. Acta Astronautica, 2020, 177: 737–748
CrossRef Google scholar
[5]
Benaroya H, Bernold L. Engineering of lunar bases. Acta Astronautica, 2008, 62(4–5): 277–299
CrossRef Google scholar
[6]
Marov M Y , Slyuta E N . Early steps toward the lunar base deployment: some prospects. Acta Astronautica, 2021, 181: 28–39
CrossRef Google scholar
[7]
Sanders G B , Larson W E . Integration of in-situ resource utilization into lunar/mars exploration through field analogs. Advances in Space Research, 2011, 47(1): 20–29
CrossRef Google scholar
[8]
Sanders G B , Larson W E . Progress made in lunar in-situ resource utilization under NASA’s exploration technology and development program. Journal of Aerospace Engineering, 2013, 26(1): 5–17
CrossRef Google scholar
[9]
Meurisse A , Carpenter J . Past, present and future rationale for space resource utilisation. Planetary and Space Science, 2020, 182: 104853
CrossRef Google scholar
[10]
Rasera J N , Cilliers J J , Lamamy J A , Hadler K . The beneficiation of lunar regolith for space resource utilisation: a review. Planetary and Space Science, 2020, 186: 104879
CrossRef Google scholar
[11]
Zhang T , Chao C Y , Yao Z X , Xu K , Zhang W X , Ding X L , Liu S T , Zhao Z , An Y H , Wang B , Yu S F , Wang B , Chen H W . The technology of lunar regolith environment construction on earth. Acta Astronautica, 2021, 178: 216–232
CrossRef Google scholar
[12]
Shkuratov Y G , Bondarenko N V . Regolith layer thickness mapping of the moon by radar and optical data. Icarus, 2001, 149(2): 329–338
CrossRef Google scholar
[13]
Miller J , Taylor L , Zeitlin C , Heilbronn L , Guetersloh S , DiGiuseppe M , Iwata Y , Murakami T . Lunar soil as shielding against space radiation. Radiation Measurements, 2009, 44(2): 163–167
CrossRef Google scholar
[14]
Li C L , Hu H , Yang M F , Pei Z Y , Zhou Q , Ren X , Liu B , Liu D W , Zeng X G , Zhang G L , Zhang H B , Liu J J , Wang Q , Deng X J , Xiao C J , Yao Y G , Xue D S , Zuo W , Su Y , Wen W B , Ouyang Z Y . Characteristics of the lunar samples returned by Chang’e-5 mission. National Science Review, 2022, 9(2): nwab188
CrossRef Google scholar
[15]
Zhang H , Zhang X , Zhang G , Dong K Q , Deng X J , Gao X S , Yang Y D , Xiao Y , Bai X , Liang K X , Liu Y W , Ma W B , Zhao S F , Zhang C , Zhang X J , Song J , Yao W , Chen H , Wang W H , Zou Z G , Yang M F . Size, morphology, and composition of lunar samples returned by Chang’e-5 mission. Science China Physics, Mechanics & Astronomy, 2021, 65(2): 229511
CrossRef Google scholar
[16]
Hu S , He H C , Ji J L , Lin Y T , Hui H J , Anand M , Tartèse R , Yan Y H , Hao J L , Gu L X , Guo Q , He H Y , Ouyang Z Y . A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature, 2021, 600(7887): 49–53
CrossRef Google scholar
[17]
Tian H C , Wang H , Chen Y , Yang W , Zhou Q , Zhang C , Lin H L , Huang C , Wu S T , Jia L H , Xu L , Zhang D , Li X G , Chang R , Yang Y H , Xie L W , Zhang D P , Zhang G L , Yang S H , Wu F Y . Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature, 2021, 600(7887): 59–63
CrossRef Google scholar
[18]
Li Q L , Zhou Q , Liu Y , Xiao Z Y , Lin Y T , Li J H , Ma H X , Tang G Q , Guo S , Tang X , Yuan J Y , Li J , Wu F Y , Ouyang Z Y , Li C L , Li X H . Two-billion-year-old volcanism on the moon from Chang’e-5 basalts. Nature, 2021, 600(7887): 54–58
CrossRef Google scholar
[19]
Costes N C , Carrier W D , Mitchell J K , Scott R F . Apollo 11 soil mechanics investigation. Science, 1970, 167(3918): 739–741
CrossRef Google scholar
[20]
Sibille L, Carpenter P K, Schlagheck R A, French R A. Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage. NASA Technical Reports NASA/TP-2006–214605, 2006
[21]
Zheng Y C , Wang S J , Ouyang Z Y , Zou Y L , Liu J Z , Li C L , Li X Y , Feng J M . CAS-1 lunar soil simulant. Advances in Space Research, 2009, 43(3): 448–454
CrossRef Google scholar
[22]
Alshibli K A , Hasan A . Strength properties of JSC-1A lunar regolith simulant. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 673–679
CrossRef Google scholar
[23]
Arslan H, Sture S, Batiste S. Experimental simulation of tensile behavior of lunar soil simulant JSC-1. Materials Science and Engineering: A, 2008, 478(1–2): 201–207
CrossRef Google scholar
[24]
Kalapodis N , Kampas G , Ktenidou O J . A review towards the design of extraterrestrial structures: from regolith to human outposts. Acta Astronautica, 2020, 175: 540–569
CrossRef Google scholar
[25]
Isachenkov M , Chugunov S , Akhatov I , Shishkovsky I . Regolith-based additive manufacturing for sustainable development of lunar infrastructure—an overview. Acta Astronautica, 2021, 180: 650–678
CrossRef Google scholar
[26]
Khoshnevis B, Bodiford M P, Burks K H, Ethridge E, Tucker D, Kim W, Toutanji H, Fiske M R. Lunar contour crafting—a novel technique for ISRU-based habitat development. In: Proceedings of the 43rd AIAA Aerospace Science Meeting and Exhibit. Reno: AIAA, 2005, AIAA 2005-538
CrossRef Google scholar
[27]
Davis G , Montes C , Eklund S . Preparation of lunar regolith based geopolymer cement under heat and vacuum. Advances in Space Research, 2017, 59(7): 1872–1885
CrossRef Google scholar
[28]
Wang K T , Lemougna P N , Tang Q , Li W , Cui X M . Lunar regolith can allow the synthesis of cement materials with near-zero water consumption. Gondwana Research, 2017, 44: 1–6
CrossRef Google scholar
[29]
Toutanji H A , Evans S , Grugel R N . Performance of lunar sulfur concrete in lunar environments. Construction & Building Materials, 2012, 29: 444–448
CrossRef Google scholar
[30]
Zhou S Q , Zhu X Y , Lu C H , Li F . Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria. Chinese Journal of Aeronautics, 2022, 35(1): 144–159
CrossRef Google scholar
[31]
Cesaretti G , Dini E , De Kestelier X , Colla V , Pambaguian L . Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronautica, 2014, 93: 430–450
CrossRef Google scholar
[32]
Krishna Balla V , Roberson L B , O’Connor G W , Trigwell S , Bose S , Bandyopadhyay A . First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping Journal, 2012, 18(6): 451–457
CrossRef Google scholar
[33]
Zhao H , Meng L , Li S Y , Zhu J H , Yuan S Q , Zhang W H . Development of lunar regolith composite and structure via laser-assisted sintering. Frontiers of Mechanical Engineering, 2022, 17(1): 6
CrossRef Google scholar
[34]
Meurisse A , Makaya A , Willsch C , Sperl M . Solar 3D printing of lunar regolith. Acta Astronautica, 2018, 152: 800–810
CrossRef Google scholar
[35]
Goulas A , Friel R J . 3D printing with moondust. Rapid Prototyping Journal, 2016, 22(6): 864–870
CrossRef Google scholar
[36]
Goulas A , Harris R A , Friel R J . Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials. Additive Manufacturing, 2016, 10: 36–42
CrossRef Google scholar
[37]
Goulas A , Binner J G P , Harris R A , Friel R J . Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing. Applied Materials Today, 2017, 6: 54–61
CrossRef Google scholar
[38]
Fateri M , Gebhardt A . Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications. International Journal of Applied Ceramic Technology, 2015, 12(1): 46–52
CrossRef Google scholar
[39]
Liu M , Tang W Z , Duan W Y , Li S , Dou R , Wang G , Liu B S , Wang L . Digital light processing of lunar regolith structures with high mechanical properties. Ceramics International, 2019, 45(5): 5829–5836
CrossRef Google scholar
[40]
Jakus A E , Koube K D , Geisendorfer N R , Shah R N . Robust and elastic lunar and martian structures from 3D-printed regolith inks. Scientific Reports, 2017, 7(1): 44931
CrossRef Google scholar
[41]
Liu J X, Cui Y, Yang J P, Wu Z S. Effect of basalt composition and mineral on high temperature melting process. Journal of Yanshan University, 2017, 41(4): 323–328 (in Chinese)

Nomenclature

Abbreviations
AMAdditive manufacturing
DSCDifferential scanning calorimetry
ISRUIn-situ resource utilization
MAMMotor-assisted microsyringe
SEMScanning electron microscope
TGAThermogravimetric analysis
Variables
akImpact toughness
AkImpact energy
EYoung’s modulus
TmMelting peak temperature
TrRecrystallization peak temperature
σbTensile strength

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB1102800), the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 11722219), the National Natural Science Foundation of China (Grant No. 51905439), and the Emerging (Interdisciplinary) Cultivation Project of Northwestern Polytechnical University, China (Grant Nos. 19SH030403, 20SH030201, and 21SH030601).

Conflict of Interest

The authors declare that they have no conflict of interest.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7846 KB)

Accesses

Citations

Detail

Sections
Recommended

/