In the livestock production system, the evolution of porcine gut microecology is consistent with the idea of “The Hygiene Hypothesis” in humans. I.e., improved hygiene conditions, reduced exposure to environmental microorganisms in early life, and frequent use of antimicrobial drugs drive immune dysregulation. Meanwhile, the overuse of antibiotics as feed additives for infectious disease prevention and animal growth induces antimicrobial resistance genes in pathogens and spreads related environmental pollutants. It justifies our attempt to review alternatives to antibiotics that can support optimal growth and improve the immunophysiological state of pigs. In the current review, we first described porcine mucosal immunity, followed by discussions of gut microbiota dynamics during the critical weaning period and the impacts brought by antibiotics usage. Evidence of in-feed additives with immuno-modulatory properties highlighting probiotics, prebiotics, and phytobiotics and their cellular and molecular networking are summarized and reviewed. It may provide insights into the immune regulatory mechanisms of antibiotic alternatives and open new avenues for health management in pig production.
Plants have evolved a complex and elaborate signaling network to respond appropriately to the pathogen invasion by regulating expression of defensive genes through certain transcription factors. The APETALA2/ethylene response factor (AP2/ERF) family members have been determined as key regulators in growth, development, and stress responses in plants. Moreover, a growing body of evidence has demonstrated the critical roles of AP2/ERFs in plant disease resistance. In this review, we describe recent advances for the function of AP2/ERFs in defense responses against microbial pathogens. We summarize that AP2/ERFs are involved in plant disease resistance by acting downstream of mitogen activated protein kinase (MAPK) cascades, and regulating expression of genes associated with hormonal signaling pathways, biosynthesis of secondary metabolites, and formation of physical barriers in an MAPK-dependent or -independent manner. The present review provides a multidimensional perspective on the functions of AP2/ERFs in plant disease resistance, which will facilitate the understanding and future investigation on the roles of AP2/ERFs in plant immunity.
In the context of climate change, the need to ensure food security and safety has taken center stage. Chemical fertilizers and pesticides are traditionally used to achieve higher plant productivity and improved plant protection from biotic stresses. However, the widespread use of fertilizers and pesticides has led to significant risks to human health and the environment, which are further compounded by the emissions of greenhouse gases during fertilizer and pesticide production and application, contributing to global warming and climate change. The naturally occurring sulfated linear polysaccharides obtained from edible red seaweeds (Rhodophyta), carrageenans, could offer climate-friendly substitutes for these inputs due to their bi-functional activities. Carrageenans and their derivatives, known as oligo-carrageenans, facilitate plant growth through a multitude of metabolic courses, including chlorophyll metabolism, carbon fixation, photosynthesis, protein synthesis, secondary metabolite generation, and detoxification of reactive oxygen species. In parallel, these compounds suppress pathogens by their direct antimicrobial activities and/or improve plant resilience against pathogens by modulating biochemical changes via salicylate (SA) and/or jasmonate (JA) and ethylene (ET) signaling pathways, resulting in increased production of secondary metabolites, defense-related proteins, and antioxidants. The present review summarizes the usage of carrageenans for increasing plant development and defense responses to pathogenic challenges under climate change. In addition, the current state of knowledge regarding molecular mechanisms and metabolic alterations in plants during carrageenan-stimulated plant growth and plant disease defense responses has been discussed. This evaluation will highlight the potential use of these new biostimulants in increasing agricultural productivity under climate change.
The pathogen Cytospora chrysosperma is the causal agent of poplar canker disease and causes considerable economic losses in China. Mitogen-activated protein kinase (MAPK) cascades play a crucial role in mediating cellular responses and Pmk1-MAPKs are indispensable for pathogenic related processes in plant pathogenic fungi. In previous studies, we demonstrated that the CcPmk1 acts as a core regulator of fungal pathogenicity by modulating a small number of master downstream targets, such as CcSte12. In this study, we identified and characterized two upstream components of CcPmk1: MAPKKK CcSte11 and MAPKK CcSte7. Deletion of CcSte11 and CcSte7, resulted in slowed growth, loss of sporulation and virulence, similar to the defects observed in the CcPmk1 deletion mutant. In addition, CcSte11, CcSte7 and CcPmk1 interact with each other, and the upstream adaptor protein CcSte50 interact with CcSte11 and CcSte7. Moreover, we explored the global regulation network of CcSte12 by transcriptional analysis between CcSte12 deletion mutants and wild-type during the simulated infection process. Two hydrolase activity GO terms (GO:0004553 and GO:0016798) and starch and sucrose metabolism (mgr00500) KEGG pathway were significantly enriched in the down-regulated genes of CcSte12 deletion mutants. In addition, a subset of glycosyl hydrolase genes and putative effector genes were significantly down-regulated in the CcSte12 deletion mutant, which might be important for fungal pathogenicity. Especially, CcSte12 bound to the CcSp84 promoter region containing the TGAAACA motif. Moreover, comparison of CcSte12-regulated genes with CcPmk1-regulated genes revealed 116 overlapping regulated genes in both CcSte12 and CcPmk1, including some virulence-associated genes. Taken together, the protein complexes CcSte11-CcSte7-CcPmk1 receive signals transmitted by upstream CcSte50 and transmit signals to downstream CcSte12, which regulates hydrolase, effectors and other genes to promote virulence. Overall, these results indicate that the CcPmk1-MAPK signaling pathway of C. chrysosperma plays a key role in the pathogenicity.
The dynamic assembly of the actin cytoskeleton is vital for Magnaporthe oryzae development and host infection. The actin-related protein MoFim1 is a key factor for organizing the M. oryzae actin cytoskeleton. Currently, how MoFim1 is regulated in M. oryzae to precisely rearrange the actin cytoskeleton is unclear. In this study, we found that MoFim1 associates with the M. oryzae mitogen-activated protein (MAP) kinase Pmk1 to regulate actin assembly. MoFim1 directly interacted with Pmk1, and the phosphorylation level of MoFim1 was decreased in Δpmk1, which led to a change in the subcellular distribution of MoFim1 in the hyphae of Δpmk1. Moreover, the actin cytoskeleton was aberrantly organized at the hyphal tip in the Δpmk1, which was similar to what was observed in the Δmofim1 during hyphal growth. Furthermore, phosphorylation analysis revealed that Pmk1 could phosphorylate MoFim1 at serine 94. Loss of phosphorylation of MoFim1 at serine 94 decreased actin bundling activity. Additionally, the expression of the site mutant of MoFim1 S94D (in which serine 94 was replaced with aspartate to mimic phosphorylation) in Δpmk1 could reverse the defects in actin organization and hyphal growth in Δpmk1. It also partially rescues the formation of appressorium failure in Δpmk1. Taken together, these findings suggest a regulatory mechanism in which Pmk1 phosphorylates MoFim1 to regulate the assembly of the actin cytoskeleton during hyphal development and pathogenesis.
Plants orchestrate drought responses at metabolic level but the genetic basis remains elusive in rice. In this study, 233 drought-responsive metabolites (DRMs) were quantified in a large rice population comprised of 510 diverse accessions at the reproductive stage. Large metabolic variations in drought responses were detected, and little correlation of metabolic levels between drought and normal conditions were observed. Interestingly, most of these DRMs could predict drought resistance in high accuracy. Genome-wide association study revealed 2522 significant association signals for 233 DRMs, and 98% (2471/2522) of the signals were co-localized with the association loci for drought-related phenotypic traits in the same population or the linkage-mapped QTLs for drought resistance in other populations. Totally, 10 candidate genes were efficiently identified for nine DRMs, seven of which harbored cis-eQTLs under drought condition. Based on comparative GWAS of common DRMs in rice and maize, representing irrigated and upland crops, we have identified three pairs of homologous genes associated with three DRMs between the two crops. Among the homologous genes, a transferase gene responsible for metabolic variation of N-feruloylputrescine was confirmed to confer enhanced drought resistance in rice. Our study provides not only genetic architecture of metabolic responses to drought stress in rice but also metabolic data resources to reveal the common and specific metabolite-mediated drought responses in different crops.
Previously we isolated three Fusarium strains (a F. sacchari strain namely GXUF-1, and another two F. commune strains namely GXUF-2 and GXUF-3), and we verified that GXUF-3 was able to cause sugarcane root rot to the chewing cane cultivar Badila. Considering that Fusarium spp. are a group of widely distributed fungal pathogens, we tested whether these three Fusarium isolates were able to cause root rot to Badila as well as sugar-making cane cultivar (Guitang42), using a suitable inoculation method established based on infection assays using Badila. We found that the three Fusarium strains were able to cause root rot symptoms to both Badila and Guitang42, to different extents. To better investigate the potential pathogenicity mechanisms, we performed Illumina high-throughput sequencing and analyzed the whole genomic sequence data of these three Fusarium strains. The results reveal that the assembly sizes of the three Fusarium strains were in a range of 44.7–48.2 Mb, with G + C contents of 48.0–48.5%, and 14,154–15,175 coding genes. The coding genes were annotated by multiple public databases, and potential pathogenic genes were predicted using proprietary databases (such as PHI, DFVF, CAZy, etc.). Furthermore, based on evolutionary analysis of the coding sequence, we found that contraction and expansion of gene families occurred in the three Fusarium strains. Overall, our results suggest a potential risk that the root rot disease may occur to the sugar-making canes although it was initially spotted from fruit cane, and provide clues to understand the pathogenic mechanisms of Fusarium spp. causing sugarcane root rot.
Worldwide wastewater treatment plants generate enormous amounts of sewage sludge, and their further disposal depends on the treatment technologies applied and spontaneously occurring microbiological processes. From different ages urban sewage sludge, 12 strains of bacteria with simultaneous tolerance to two or more trace elements: Co, Ni, Cu, Zn, Cd and Pb at concentration of 3-5 mmol were isolated and identified by PCR of target genes and Sanger sequencing methods. The isloated metal(loids) tolerant strains belong to the species, i.e., Serratia fonticola, Rhodococcus qingshengii, Pseudomonas fragi, Pseudomonas extremaustralis, Pseudomonas cedrina, Stenotrophomonas maltophilia, Serratia liquefaciens and Citrobacter freundii. The ecological features of the isolated strains were studied. The optimal growth temperatures for most strains was 15–30°C at pH range of 5–9, although some strains grew at 7°C (Pseudomonas fragi SS0-4, Serratia fonticola SS0-9 and Serratia fonticola SS12-11). Satisfactory growth of two strains (Serratia fonticola SS0-1and Citrobacter freundii SS60-12) was noted in an acidic medium at pH 4. Most of the strains grew in the NaCl concentration range of 1–5%. The isolated bacteria resistant to high concentrations of trace elements can be used for the effective mineralization of sewage sludge and for the decontamination of wastewater.
The male reproductive system has a standard immune response regulatory mechanism, However, a variety of external stimuli, including viruses, bacteria, heat, and medications can damage the testicles and cause orchitis and epididymitis. It has been shown that various RNA viruses are more likely to infect the testis than DNA viruses, inducing orchitis and impairing testicular function. It was found that local injection of the viral RNA analog poly(I:C) into the testes markedly disrupted the structure of the seminiferous tubules, accompanied by apoptosis and inflammation. Poly(I:C) mainly inhibited the expression of testosterone synthesis-associated proteins, STAR and MGARP, and affected the synthesis and metabolism of amino acids and lipids in the testis. This led to the disruption of the metabolite levels in the testis of mice, thus affecting the normal spermatogenesis process. The present study analyzed the acute inflammatory response of the testis to viral infection using a multi-omics approach. It provides insights into how RNA virus infection impairs testicular function and offers a theoretical basis for future studies on immune homeostasis and responses under stress conditions in male reproduction.
In the ecosphere, plants interact with environmental biotic and abiotic partners, where unbalanced interactions can induce unfavourable stress conditions. Abiotic factors (temperature, water, and salt) are primarily required for plants healthy survival, and any change in their availability is reflected as a stress signal. In certain cases, the presence of infectious pathogens such as viruses, bacteria, fungi, protozoa, nematodes, and insects can also create stress conditions in plants, leading to the emergence of disease or deficiency symptoms. While these symptoms are often typical of abiotic or biotic stress, however, there are instances where they can intensify under specific conditions. Here, we primarily summarize the viral interactions with plants during abiotic stress to understand how these associations are linked together during viral pathogenesis. Secondly, focus is given to the beneficial effects of root-associated symbiotic bacteria in fulfilling the basic needs of plants during normal as well as abiotic stress conditions. The modulations of plant functional proteins, and their occurrence/cross-talk, with pathogen (virus) and symbiont (bacteria) molecules are also discussed. Furthermore, we have highlighted the biochemical and systematic adaptations that develop in plants due to bacterial symbiosis to encounter stress hallmarks. Lastly, directions are provided towards exploring potential rhizospheric bacteria to maintain plant-microbes ecosystem and manage abiotic stress in plants to achieve better trait health in the horticulture crops.
Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in detrimental effects on soil biota. The aim of the present study was to isolate microorganisms from field soils and evaluate the strains on ability to degrade organophosphates as single isolate and as a consortium. Isolated strains were identified using both biochemical and molecular techniques. Results revealed that, out of the 46 isolated strains, three isolates herein referred to as S6, S36 and S37 showed an average diazinon degradation rate of 76.4%, 76.7% and 76.8% respectively, of the initial dose (50 ppm) within 11 days of incubation in mineral medium. Notably, isolates S36 and S37 were more effective than S6 in degrading diazinon by 40% in soil aliquot after 11 days and therefore were evaluated on biochemical reactions and molecular identification. The isolates showed variable biochemical characteristics. However, both isolates possessed catalase enzyme, but lacked oxidase enzyme. Molecular characterization showed that, the closest species for S36 and S37 were Priestia megaterium and P. arybattia, respectively, based on 16S rRNA gene similarity (> 99%). Combination of the strains increased diazinon degradation ability by 45% compared to single strain treatment. Chlorpyrifos was the most highly degraded organophosphate, compared to phorate and cadusafos. Therefore it is expected that the pesticide-degrading bacteria could be a solution to soil health improvement and contribution to the production of safe agricultural products.
Phyllosphere endophytes play a critical role in a myriad of biological functions, such as maintaining plant health and overall fitness. They play a determinative role in crop yield and quality by regulating vital processes, such as leaf functionality and longevity, seed mass, apical growth, flowering, and fruit development. This study conducted a comprehensive bibliometric analysis aiming to review the prevailing research trajectories in phyllosphere endophytes and harness both primary areas of interest and emerging challenges. A total of 156 research articles on phyllosphere endophytes, published between 2002 and 2022, were retrieved from the Web of Science Core Collection (WoSCC). A systematic analysis was conducted using CiteSpace to visualize the evolution of publication frequency, the collaboration network, the co-citation network, and keywords co-occurrence. The findings indicated that initially, there were few publications on the topic of phyllosphere endophytes. However, from 2011 onwards, there was a notable increase in the number of publications on phyllosphere endophytes, gaining worldwide attention. Among authors, Arnold, A Elizabeth is widely recognized as a leading author in this research area. In terms of countries, the USA and China hold the highest rankings. As for institutional ranking, the University of Arizona is the most prevalent and leading institute in this particular subject. Collaborative efforts among the authors and institutions tend to be confined to small groups, and a large-scale collaborative network needs to be established. This study identified the influential journals, literature, and hot research topics. These findings also highlight the interconnected nature of key themes, e.g., phyllosphere endophyte research revolves around the four pillars: diversity, fungal endophytes, growth, and endophytic fungi. This study provides an in-depth perspective on phyllosphere endophytes studies, revealing the identification of biodiversity and microbial interaction of phyllosphere endophytes as the principal research frontiers. These analytical findings not only elucidate the recent trajectory of phyllosphere endophyte research but also provide invaluable insights for similar studies and their potential applications on a global scale.
Pollution by toxic heavy metals creates a significant impact on the biotic community of the ecosystem. Nowadays, a solution to this problem is an eco-friendly approach like phytoremediation, in which plants are used to ameliorate heavy metals. In addition, various amendments are used to enhance the potential of heavy metal phytoremediation. Symbiotic microorganisms such as phosphate-solubilizing bacteria (PSB), endophytes, mycorrhiza and plant growth-promoting rhizobacteria (PGPR) play a significant role in the improvement of heavy metal phytoremediation potential along with promoting the growth of plants that are grown in contaminated environments. Various chemical chelators (Indole 3-acetic acid, ethylene diamine tetra acetic acid, ethylene glycol tetra acetic acid, ethylenediamine-N, N-disuccinic acid and nitrilotri-acetic acid) and their combined action with other agents also contribute to heavy metal phytoremediation enhancement. With modern techniques, transgenic plants and microorganisms are developed to open up an alternative strategy for phytoremediation. Genomics, proteomics, transcriptomics and metabolomics are widely used novel approaches to develop competent phytoremediators. This review accounts for the synergistic interactions of the ameliorating agent’s role in enhancing heavy metal phytoremediation, intending to highlight the importance of these various approaches in reducing heavy metal pollution.
Many Gram-negative pathogens employ the type III secretion system (T3SS) to deliver effector proteins into host cells, thereby modulating host cellular processes and suppressing host immunity to facilitate pathogenesis and colonization. In this study, we developed a straightforward, rapid, and quantitative method for detecting T3SS-mediated translocation of Pseudomonas syringae effectors using a self-assembling split Nano luciferase (Nluc)-based reporter system. It was demonstrated that this system can detect effector secretion in vitro with an exceptionally high signal-to-noise ratio and sensitivity, attributed to the strong affinity between the split domains of Nluc and the intense luminescence generated by functional Nluc. During natural infections, effectors fused to a small C-terminal fragment of Nluc were successfully translocated into plant cells and retained their virulence functions. Furthermore, upon infection of plants expressing the N-terminal fragment of Nluc with these P. syringae strains, functional Nluc proteins were spontaneously assembled and produced bright luminescence, demonstrating that this system enables the straightforward and rapid assessment of P. syringae T3SS-mediated effector translocation during natural infections. In conclusion, the self-assembling split Nluc-based reporting system developed in this study is suitable for efficient in vitro and in planta detection of effectors secreted via T3SS.
Tea plant [Camellia sinensis (L.) O. Kuntze] is one of the important foliar cash crops in China, and its root system absorbs heavy metal (HM) elements enriched in the soil and transports them to the over ground part. In order to ensure the safety of the soil ecological environment and tea raw materials in the tea production area, the HM contents of soil and tea plant leaves in Suzhou tea plantations were detected, the relationship between HMs and soil physicochemical properties was analyzed, and the ecological risk of HMs in tea plantation soils was evaluated by using relevant detection techniques and evaluation models. The results showed that the average pH of tea plantation soils around Tai Lake in Suzhou was within the range suitable for the growth of tea plants. The pH, soil organic matter, total nitrogen, available phosphorus and available potassium of tea plantation soil satisfying the requirements of high quality, high efficiency and high yield (‘3H’) tea plantation accounted for 47.06%, 26.47%, 8.82%, 79.41% and 67.65%, respectively. Site 2 fully met the requirements of ‘3H’ tea plantation. In addition, the contents of cadmium (Cd) and mercury (Hg) were extremely variable, and the average contents exceeded the background value of soil in Jiangsu Province, but the HM contents of tea leaves all met the pollution-free standard, and the HM contents of tea leaves around Tai Lake in Suzhou were generally at a safe level. The composite ecological risk index ranged from 0.05 to 0.60, and 32 of the 34 sample sites (except site 21 and site 23) are the most suitable agricultural land for tea plantations.
The type VI secretion system (T6SS) is a powerful bacterial molecular weapon that can inject effector proteins into prokaryotic or eukaryotic cells, thereby participating in the competition between bacteria and improving bacterial environmental adaptability. Although most current studies of the T6SS have focused on animal bacteria, this system is also significant for the adaptation of plant-associated bacteria. This paper briefly introduces the structure and biological functions of the T6SS. We summarize the role of plant-associated bacterial T6SS in adaptability to host plants and the external environment, including resistance to biotic stresses such as host defenses and competition from other bacteria. We review the role of the T6SS in response to abiotic factors such as acid stress, oxidation stress, and osmotic stress. This review provides an important reference for exploring the functions of the T6SS in plant-associated bacteria. In addition, characterizing these anti-stress functions of the T6SS may provide new pathways toward eliminating plant pathogens and controlling agricultural losses.
Persimmon anthracnose, a severe disease caused by the hemibiotrophic fungus Colletotrichum horii, poses a substantial threat to China’s persimmon industry. Previous research showed that ‘Kangbing Jianshi’ cultivar exhibits strong resistance to anthracnose. Notably, ‘Kangbing Jianshi’ branches exhibit greater lignification compared with the susceptible ‘Fuping Jianshi’ cultivar. In this study, higher lignin content was observed in ‘Kangbing Jianshi’ compared with ‘Fuping Jianshi’, and this difference was associated with disease resistance. Transcriptome and metabolome analyses revealed that the majority of differentially expressed genes and differentially accumulated metabolites were primarily enriched in the phenylpropanoid biosynthesis and lignin synthesis pathways. Furthermore, significant upregulation of DkCAD1, a pivotal gene involved in lignin metabolism, was observed in the resistant cultivar when inoculated with C. horii. Transient overexpression of DkCAD1 substantially increased lignin content and improved resistance to C. horii in a susceptible cultivar. Furthermore, through yeast one-hybrid (Y1H) assays, we identified two WRKY transcription factors, DkWRKY8 and DkWRKY10, which interacts with the DkCAD1 promoter and induces its activity. Overexpression of DkWRKY8 and DkWRKY10 not only increased leaf lignin content but also enhanced persimmon tolerance to C. horii. Moreover, the expression levels of DkCAD1, DkWRKY8, and DkWRKY10 were significantly increased in response to salicylic acid and jasmonic acid in the resistant cultivar. These findings enhance our understanding of the molecular functions of DkWRKY8, DkWRKY10, and DkCAD1 in persimmons, as well as their involvement in molecular breeding processes in persimmons.
In plant immunity, a well-orchestrated cascade is initiated by the dimerization of receptor-like kinases (RLKs), followed by the phosphorylation of receptor-like cytoplasmic kinases (RLCKs) and subsequent activation of NADPH oxidases for ROS generation. Recent findings by Zhong et al. illustrated that a maize signaling module comprising ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 governs quantitative disease resistance to grey leaf spot, a pervasive fungal disease in maize worldwide, unveiling the conservation of this signaling quartet in plant immunity.
Drought-induced osmotic stress severely affects the growth and yield of maize. However, the mechanisms underlying the different responses of young and old maize leaves to osmotic stress remain unclear. To gain a systematic understanding of age-related stress responses, we compared osmotic-stress-induced changes in maize leaves of different ages using multi-omics approaches. After short-term osmotic stress, old leaves suffered more severe water deficits than young leaves. The adjustments of transcriptomes, proteomes, and hormones in response to osmotic stress were more dynamic in old leaves. Metabolic activities, stress signaling pathways, and hormones (especially abscisic acid) responded to osmotic stress in an age-dependent manner. We identified multiple functional clusters of genes and proteins with potential roles in stress adaptation. Old leaves significantly accumulated stress proteins such as dehydrin, aquaporin, and chaperones to cope with osmotic stress, accompanied by senescence-like cellular events, whereas young leaves exhibited an effective water conservation strategy mainly by hydrolyzing transitory starch and increasing proline production. The stress responses of individual leaves are primarily determined by their intracellular water status, resulting in differential transcriptomes, proteomes, and hormones. This study extends our understanding of the mechanisms underlying plant responses to osmotic stress.
The Arabidopsis pi4kβ1,2 mutant is mutated in the phosphatidylinositol 4-kinase (PI4K) β1 and PI4Kβ2 enzymes which are involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P), a minor membrane lipid with important signaling roles. pi4kβ1,2 plants display autoimmunity and shorter roots. Though the pi4kβ1,2 mutant has been extensively characterized, the source of its autoimmunity remains largely unknown. In this study, through a genetic suppressor screen, we identified multiple partial loss-of-function alleles of signal peptide peptidase (spp) that can suppress all the defects of pi4kβ1,2. SPP is an intramembrane cleaving aspartic protease. Interestingly, pi4kβ1,2 plants display enhanced ER stress response and mutations in SPP can suppress such phenotype. Furthermore, reduced ER stress responses were observed in the spp single mutants. Overall, our study reveals a previously unknown function of PI4Kβ and SPP in ER stress and plant immunity.
Susceptibility is defined as the disruption of host defence systems that promotes infection or limits pathogenicity. Glutathione (GSH) is a major component of defence signalling pathways that maintain redox status and is synthesised by γ-glutamyl cysteine synthetase (γ-ECS). On the other hand, lignin acts as a barrier in the primary cell wall of vascular bundles (VBs) synthesised by phenylalanine ammonia-lyase (PAL) in the intracellular system of plants. In this study, we used two inhibitors, such as L-Buthionine-sulfoximine (BSO), which irreversibly inhibits γ-ECS, and 2,4-dichlorophenoxyacetic acid (DPA), which reduces PAL activity and leads to the induction of oxidative stress in wheat (Triticum aestivum) seedlings after exposure to Fusarium oxysporum. Seedlings treated with 1 mM L-BSO and 2,4-DPA showed high levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), carbonyl (CO) content, and low activity of antioxidative enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)] as compared to wild-type (WT) seedlings under F. oxysporum infection. Further, the content of reduced glutathione (RGSH), ascorbate (ASC), and lignin was decreased in BSO and DPA treated seedlings as compared to WT seedlings during Fusarium infection. Moreover, treatment with BSO and DPA significantly inhibited the relative activity of γ-ECS and PAL (P ≤ 0.001) in WT seedlings during Fusarium infection, which led to disintegrated VBs and, finally, cell death. Our results demonstrate that inhibition of γ-ECS and PAL by BSO and DPA, respectively, disrupts the defence mechanisms of wheat seedlings and induces susceptibility to F. oxysporum.
Mitogen-activated protein kinase (MAPK) activation is one of the significant immune events that respond to pathogens in plants. A MAPK cascade often contains a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK/MKK), and a MAPK. The well-characterized MAPK cascade, to date, is the MAPKKK3/4/5-MKK4/5-MPK3/6 module. Soybean cyst nematodes (SCN) is one of the most devastating soybean pathogens. However, the early immune components contributing to soybean resistance to SCN and the role of the MAPK cascade in the soybean–SCN interaction remain unclear. A recent study published in Plant Cell discovered that GmMPK3/6 phosphorylates a receptor-like cytoplasmic kinase (RLCK), CDG1-LIKE1 (GmCDL1), and maintains the stability of GmCDL1 in soybean. Remarkably, GmCDL1 enhances GmMPK3/6 activation and resistance to SCN by phosphorylating GmMAPKKK5 and activating the GmMAPKKK5-GmMKK4-GmMPK3/6 cascade. In addition, two L-type lectin receptor kinases (LecRKs), GmLecRK02g and GmLecRK08g, are involved in the GmCDL1 function after the perception of SCN. taken together, this study not only discovers a complete early immune pathway that responds to SCN infection in soybean, but also reveals a molecular mechanism by which plants maintain the activation of the MAPK cascade and resistance.
Geminiviruses are an important group of viruses that infect a variety of plants and result in heavy agricultural losses worldwide. The homologs of C4 (or L4) in monopartite geminiviruses and AC4 (or AL4) in bipartite geminiviruses are critical viral proteins. The C4 proteins from several geminiviruses are the substrates of S-acylation, a dynamic post-translational modification, for the maintenance of their membrane localization and function in virus infection. Here we initiated a screening and identified a plant protein ABAPT3 (Alpha/Beta Hydrolase Domain-containing Protein 17-like Acyl Protein Thioesterase 3) as the de-S-acylation enzyme of C4 encoded by BSCTV (Beet severe curly top virus). Overexpression of ABAPT3 reduced the S-acylation of BSCTV C4, disrupted its plasma membrane localization, inhibited its function in pathogenesis, and suppressed BSCTV infection. Because the S-acylation motifs are conserved among C4 from different geminiviruses, we tested the effect of ABAPT3 on the C4 protein of ToLCGdV (Tomato leaf curl Guangdong virus) from another geminivirus genus. Consistently, ABAPT3 overexpression also disrupted the S-acylation, subcellular localization, and function of ToLCGdV C4, and inhibited ToLCGdV infection. In summary, we provided a new approach to globally improve the resistance to different types of geminiviruses in plants via de-S-acylation of the viral C4 proteins and it can be extendedly used for suppression of geminivirus infection in crops.
As one of the most important food and feed crops worldwide, maize suffers much more tremendous damages under heat stress compared to other plants, which seriously inhibits plant growth and reduces productivity. To mitigate the heat-induced damages and adapt to high temperature environment, plants have evolved a series of molecular mechanisms to sense, respond and adapt high temperatures and heat stress. In this review, we summarized recent advances in molecular regulations underlying high temperature sensing, heat stress response and memory in maize, especially focusing on several important pathways and signals in high temperature sensing, and the complex transcriptional regulation of ZmHSFs (Heat Shock Factors) in heat stress response. In addition, we highlighted interactions between ZmHSFs and several epigenetic regulation factors in coordinately regulating heat stress response and memory. Finally, we laid out strategies to systematically elucidate the regulatory network of maize heat stress response, and discussed approaches for breeding future heat-tolerance maize.
Nickel (Ni), a component of urease, is a micronutrient essential for plant growth and development, but excess Ni is toxic to plants. Tomato (Solanum lycopersicum L.) is one of the important vegetables worldwide. Excessive use of fertilizers and pesticides led to Ni contamination in agricultural soils, thus reducing yield and quality of tomatoes. However, the molecular regulatory mechanisms of Ni toxicity responses in tomato plants have largely not been elucidated. Here, we investigated the molecular mechanisms underlying the Ni toxicity response in tomato plants by physio-biochemical, transcriptomic and molecular regulatory network analyses. Ni toxicity repressed photosynthesis, induced the formation of brush-like lateral roots and interfered with micronutrient accumulation in tomato seedlings. Ni toxicity also induced reactive oxygen species accumulation and oxidative stress responses in plants. Furthermore, Ni toxicity reduced the phytohormone concentrations, including auxin, cytokinin and gibberellic acid, thereby retarding plant growth. Transcriptome analysis revealed that Ni toxicity altered the expression of genes involved in carbon/nitrogen metabolism pathways. Taken together, these results provide a theoretical basis for identifying key genes that could reduce excess Ni accumulation in tomato plants and are helpful for ensuring food safety and sustainable agricultural development.
Maize (Zea mays), a major food crop worldwide, is susceptible to infection by the saprophytic fungus Aspergillus flavus that can produce the carcinogenic metabolite aflatoxin (AF) especially under climate change induced abiotic stressors that favor mold growth. Several studies have used “-omics” approaches to identify genetic elements with potential roles in AF resistance, but there is a lack of research identifying the involvement of small RNAs such as microRNAs (miRNAs) in maize-A. flavus interaction. In this study, we compared the miRNA profiles of three maize lines (resistant TZAR102, moderately resistant MI82, and susceptible Va35) at 8 h, 3 d, and 7 d after A. flavus infection to investigate possible regulatory antifungal role of miRNAs. A total of 316 miRNAs (275 known and 41 putative novel) belonging to 115 miRNA families were identified in response to the fungal infection across all three maize lines. Eighty-two unique miRNAs were significantly differentially expressed with 39 miRNAs exhibiting temporal differential regulation irrespective of the maize genotype, which targeted 544 genes (mRNAs) involved in diverse molecular functions. The two most notable biological processes involved in plant immunity, namely cellular responses to oxidative stress (GO:00345990) and reactive oxygen species (GO:0034614) were significantly enriched in the resistant line TZAR102. Coexpression network analysis identified 34 hubs of miRNA-mRNA pairs where nine hubs had a node in the module connected to their target gene with potentially important roles in resistance/susceptible response of maize to A. flavus. The miRNA hubs in resistance modules (TZAR102 and MI82) were mostly connected to transcription factors and protein kinases. Specifically, the module of miRNA zma-miR156b-nb – squamosa promoter binding protein (SBP), zma-miR398a-3p – SKIP5, and zma-miR394a-5p – F-box protein 6 combinations in the resistance-associated modules were considered important candidates for future functional studies.
Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs. The review also explores the mechanisms of NPs interactions with heavy metals, including adsorption, precipitation, and redox reactions. Critical factors influencing the remediation efficiency, such as NPs size, surface charge, and composition, are systematically examined. Furthermore, the environmental fate, transport, and potential risks associated with the application of NPs are critically evaluated. The review also highlights various sources of metal and metalloid pollutants and their impact on human health and translocation in plant tissues. Prospects and challenges in translating NPs-based remediation from laboratory research to real-world applications are proposed. The current work will be helpful to direct future research endeavors and promote the sustainable implementation of metal and metalloid elimination.
Owing to its versatile roles in almost all aspects of plants, FERONIA (FER), a receptor-like kinase of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) subfamily, has received extensive research interests during the past decades. Accumulating evidence has been emerged that FER homologs in horticultural crops also play crucial roles in reproductive biology and responses to environmental stimuli (abiotic and biotic stress factors). Here, we provide a review for the latest advances in the studies on FER homologs in modulating stress responses in horticultural crops, and further analyze the underlying mechanisms maintained by FER. Moreover, we also envisage the missing links in current work and provide a perspective for future studies on this star protein.
In eukaryotes, the nuclear membrane that encapsulates genomic DNA is composed of an inner nuclear membrane (INM), an outer nuclear membrane (ONM), and a perinuclear space. SUN proteins located in the INM and KASH proteins in the ONM form the SUN-KASH NM-bridge, which functions as the junction of the nucleocytoplasmic complex junction. Proteins containing the SUN domain showed the highest correlation with differentially accumulated proteins (DAPs) in the wheat response to fungal stress. To understand the characteristics of SUN and its associated proteins in wheat responding to pathogen stress, here we investigated and comprehensive analyzed SUN- and KASH-related proteins among the DAPs under fungi infection based on their conserved motifs. In total, four SUN proteins, one WPP domain-interacting protein (WIP), four WPP domain-interacting tail-anchored proteins (WIT), two WPP proteins and one Ran GTPase activating protein (RanGAP) were identified. Following transient expression of Nicotiana benthamiana, TaSUN2, TaRanGAP2, TaWIT1 and TaWIP1 were identified as nuclear membrane proteins, while TaWPP1 and TaWPP2 were expressed in both the nucleus and cell membrane. RT-qPCR analysis demonstrated that the transcription of TaSUN2, TaRanGAP2 and TaWPP1 were strongly upregulated in response to fungal infection. Furthermore, using the bimolecular fluorescence complementation, the luciferase complementation and a nuclear and split-ubiquitin-based membrane yeast two-hybrid systems, we substantiated the interaction between TaSUN2 and TaWIP1, as well as TaWIP1/WIT1 and TaWPP1/WPP2. Silencing of TaSUN2, TaRanGAP2 and TaWPP1 in wheat leaves promoted powdery mildew infection and hyphal growth, and reduced the expression of TaBRI1, TaBAK1 and Ta14-3–3, indicating that these NM proteins play a positive role in resistance to fungal stress. Our study reveals the characteristics of NM proteins and propose the preliminary construction of SUN-WIP-WPP-RanGAP complex in wheat, which represents a foundation for detail elucidating their functions in wheat in future.
Although genome-wide A-to-I editing mediated by adenosine-deaminase-acting-on-tRNA (ADAT) occurs during sexual reproduction in the presence of stage-specific cofactors, RNA editing is not known to occur during vegetative growth in filamentous fungi. Here we identified 33 A-to-I RNA editing events in vegetative hyphae of Fusarium graminearum and functionally characterized one conserved hyphal-editing site. Similar to ADAT-mediated editing during sexual reproduction, majority of hyphal-editing sites are in coding sequences and nonsynonymous, and have strong preference for U at -1 position and hairpin loops. Editing at TA437G, one of the hyphal-specific editing sites, is a premature stop codon correction (PSC) event that enables CHE1 gene to encode a full-length zinc fingertranscription factor. Manual annotations showed that this PSC site is conserved in CHE1 orthologs from closely-related Fusarium species. Whereas the che1 deletion and CHE1 TAA (G438 to A) mutants had no detectable phenotype, the CHE1 TGG (A437 to G) mutant was defective in hyphal growth, conidiation, sexual reproduction, and plant infection. However, the CHE1 TGG mutant was increased in tolerance against oxidative stress and editing of TA437G in CHE1 was stimulated by H2O2 treatment in F. graminearum. These results indicate that fixation of the premature stop codon in CHE1 has a fitness cost on normal hyphal growth and reproduction but provides a benefit to tolerance against oxidative stress. Taken together, A-to-I editing events, although rare (not genome-wide), occur during vegetative growth and editing in CHE1 plays a role in response to oxidative stress in F. graminearum and likely in other fungal pathogens.
Climate change, driven by human activities and natural processes, has led to critical alterations in varying patterns during cropping seasons and is a vital threat to global food security. The climate change impose several abiotic stresses on crop production systems. These abiotic stresses include extreme temperatures, drought, and salinity, which expose agricultural fields to more vulnerable conditions and lead to substantial crop yield and quality losses. Plant hormones, especially salicylic acid (SA), has crucial roles for plant resiliency under unfavorable environments. This review explores the genetics and molecular mechanisms underlying SA's role in mitigating abiotic stress-induced damage in plants. It also explores the SA biosynthesis pathways, and highlights the regulation of their products under several abiotic stresses. Various roles and possible modes of action of SA in mitigating abiotic stresses are discussed, along with unraveling the genetic mechanisms and genes involved in responses under stress conditions. Additionally, this review investigates molecular pathways and mechanisms through which SA exerts its protective effects, such as redox signaling, cross-talks with other plant hormones, and mitogen-activated protein kinase pathways. Moreover, the review discusses potentials of using genetic engineering approaches, such as CRISPR technology, for deciphering the roles of SA in enhancing plant resilience to climate change related abiotic stresses. This comprehensive analysis bridges the gap between genetics of SA role in response to climate change related stressors. Overall goal is to highlight SA's significance in safeguarding plants and by offering insights of SA hormone for sustainable agriculture under challenging environmental conditions.
Protein phosphorylation plays an important role in immune signaling transduction in plant resistance to pathogens. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), severely devastates wheat production. Nonetheless, the molecular mechanism of wheat resistance to stripe rust remains limited. In this study, quantitative phosphoproteomics was employed to investigate the protein phosphorylation changes in wheat challenged by Pst. A total of 1537 and 2470 differentially accumulated phosphoproteins (DAPs) were identified from four early infection stage (6, 12, 18 and 24 h post-inoculation) in incompatible and compatible wheat-Pst interactions respectively. KEGG analysis revealed that Oxidative Phosphorylation, Phosphatidylinositol Signaling, and MAPK signaling processes are distinctively enriched in incompatible interaction, while Biosynthesis of secondary metabolites and RNA degradation process were significantly enriched in compatible interactions. In particular, abundant changes in phosphorylation levels of chloroplast proteins were identified, suggesting the regulatory role of photosynthesis in wheat-Pst interaction, which is further emphasized by protein-protein interaction (PPI) network analysis. Motif-x analysis identified [xxxxSPxxxx] motif, likely phosphorylation sites for defensive response-related kinases, and a new [xxxxSSxxxx] motif significantly enriched in incompatible interaction. The results shed light on the early phosphorylation events contributing to wheat resistance against Pst. Moreover, our study demonstrated that the phosphorylation levels of Nucleoside diphosphate kinase TaNAPK1 are upregulated at 12 hpi with CYR23 and at 24 hpi with CYR31. Transient silencing of TaNAPK1 was able to attenuate wheat resistance to CYR23 and CYR31. Our study provides new insights into the mechanisms underlying Pst-wheat interactions and may provide database to find potential targets for the development of new resistant varieties.
Global crop production is severely affected by environmental factors such as drought, salinity, cold, flood etc. Among these stresses, drought is one of the major abiotic stresses reducing crop productivity. It is expected that drought conditions will further increase because of the increasing global temperature. In general, viruses are seen as a pathogen affecting the crop productivity. However, several researches are showing that viruses can induce drought tolerance in plants. This review explores the mechanisms underlying the interplay between viral infections and the drought response mechanisms in plants. We tried to address the molecular pathways and physiological changes induced by viruses that confer drought tolerance, including alterations in hormone signaling, antioxidant defenses, scavenging the reactive oxygen species, role of RNA silencing and miRNA pathway, change in the expression of several genes including heat shock proteins, cellulose synthase etc. Furthermore, we discuss various viruses implicated in providing drought tolerance and examine the range of plant species exhibiting this phenomenon. By applying current knowledge and identifying gaps in understanding, this review aims to provide valuable insights into the complex dynamics of virus-induced drought tolerance in plants, paving the way for future research directions and practical applications in sustainable agriculture.
As sessile organisms, plants constantly face a variety of abiotic stresses, such as drought, salinity, and metal/metalloid toxicity, all of which possess significant threats to plant growth and yield potential. Improving plant resilience to such abiotic stresses bears paramount importance in practicing sustainable agriculture worldwide. Acetic acid/acetate has been recognized as an important metabolite with multifaceted roles in regulating plant adaptation to diverse abiotic stresses. Recent studies have elucidated that acetic acid can potentiate plants’ inherent mechanisms to withstand the adverse effects of abiotic stresses through the regulation of lipid metabolism, hormone signaling, epigenetic changes, and physiological defense mechanisms. Numerous studies also underpin the potential use of acetic acid in boosting crop production under unfavorable environmental conditions. This review provides a comprehensive update on the understanding of how acetic acid regulates plant photosynthesis, acts as an antitranspirant, detoxifies reactive oxygen species to alleviate oxidative stress, interacts with phytohormones to regulate physiological processes, and improves soil fertility and microbial diversity, with a specific focus on drought, salinity, and metal toxicity. We also highlight the eco-friendly and economic potential of acetic acid that may attract farmers from developing countries to harness the benefits of acetic acid application for boosting abiotic stress resistance in crops. Given that acetic acid is a widely accessible, inexpensive, and eco-friendly compound, the revelation of acetic acid-mediated regulatory pathways and its crosstalk with other signaling molecules will have significant importance in developing a sustainable strategy for mitigating abiotic stresses in crops.
Cytokinin oxidase/dehydrogenase (CKX) is the key enzyme that has been observed to catalyze irreversible inactivation of cytokinins and thus modulate cytokinin levels in plants. CKX gene family is known to have few members which are, expanded in the genome mainly due to duplication events. A total of nine MiCKXs were identified in Morus indica cv K2 with almost similar gene structures and conserved motifs and domains. The cis-elements along with expression analysis of these MiCKXs revealed their contrasting and specific role in plant development across different developmental stages. The localization of these enzymes in ER and Golgi bodies signifies their functional specification and property of getting modified post-translationally to carry out their activities. The overexpression of MiCKX4, an ortholog of AtCKX4, displayed longer primary root and higher number of lateral roots. Under ABA stress also the transgenic lines showed higher number of lateral roots and tolerance against drought stress as compared to wild-type plants. In this study, the CKX gene family members were analyzed bioinformatically for their roles under abiotic stresses.
Gamma-aminobutyric acid (GABA), a ubiquitous non-protein 4-carbon amino acid present in both prokaryotic and eukaryotic organisms. It is conventionally recognized as a neurotransmitter in mammals and plays a crucial role in plants. The context of this review centers on the impact of GABA in mitigating abiotic stresses induced by climate change, such as drought, salinity, heat, and heavy metal exposure. Beyond its neurotransmitter role, GABA emerges as a key player in diverse metabolic processes, safeguarding plants against multifaceted abiotic as well as biotic challenges. This comprehensive exploration delves into the GABA biosynthetic pathway, its transport mechanisms, and its intricate interplay with various abiotic stresses. The discussion extends to the nuanced relationship between GABA and phytohormones during abiotic stress acclimation, offering insights into the strategic development of mitigation strategies against these stresses. The delineation of GABA's crosstalk with phytohormones underscores its pivotal role in formulating crucial strategies for abiotic stress alleviation in plants.
Heat stress is a serious problem that affects animal husbandry by reducing growth and reproductive performance of animals. Adding plant extracts to the diet is an effective way to help overcome this problem. Alginate oligosaccharide (AOS) is a natural non-toxic antioxidant with multiple biological activities. This study analyzed the potential mechanism of AOS in alleviating heat stress and improving semen quality in boars through a combination of multiple omics tools. The results indicated that AOS could significantly increase sperm motility (P < 0.001) and sperm concentration (P < 0.05). At the same time, AOS improved the antioxidant capacity of blood and semen, and increased blood testosterone (P < 0.05) level. AOS could improve the metabolites in sperm, change the composition of gut microbiota, increase the relative abundance of beneficial bacteria such as Pseudomonas (P < 0.01), Escherichia-Shigella (P < 0.05), Bifidobacterium (P < 0.01), reduce the relative abundance of harmful bacteria such as Prevotella_9 (P < 0.05), Prevotellaceae_UCG-001 (P < 0.01), and increase the content of short chain fatty acids. Proteomic results showed that AOS increased proteins related to spermatogenesis, while decreasing heat shock protein 70 (P < 0.05) and heat shock protein 90 (P < 0.01). These results were verified using immunofluorescence staining technology. There was a good correlation among sperm quality, sperm metabolome, sperm proteome, and gut microbiota. In conclusion, AOS can be used as a feed additive to increase the semen quality of boars to enhance reproductive performance under heat stress.
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
To assess the effects of a time-restricted feeding (TRF) regimen on meat quality of pigs exposed to high ambient temperature, a two-month feeding and heat treatment (HT) trial was conducted using a 2 × 2 factorial design. A total of 24 growing pigs (11.0 ± 1.9 kg) were randomly divided into four groups: thermal neutral group (NT, 24 ± 3 °C), HT group (exposed to a high temperature at 35 ± 2 °C from 11:00 to 15:00), TRF group and HT + TRF group (HT and TRF co-treatment group, n = 6 for each group). Pigs in TRF groups got access to feed within 5 h from 9:00 to14:00, while the others were fed at 6:00, 11:30, and 16:00. All pigs received the same diet during the trail. The results showed that HT increased the drip loss, shear force, lightness, and malondialdehyde production in Longissimus thoracis et lumborum (LTL) muscle. TRF reversely reduced the shear force and drip loss, accompanied by decreased intramuscular fat and increased moisture content. Enhanced fiber transformation from type 1 to type 2b and down-regulated expression of muscle growth-related genes were observed by HT, while TRF suppressed the fiber transformation and expression of muscle atrophy-related genes. Furthermore, TRF restored the diminished protein expressions of Nrf2 and HO-1 in LTL muscle by chronic HT. Accumulation of HSP70 in muscle of HT group was reduced by treatment of TRF. HT declined the expression of vital genes involved in fatty acids poly-desaturation and the proportion of (polyunsaturated fatty acids) PUFAs, mainly omega-6 in LTL muscle, while TRF group promoted the expression of poly-desaturation pathway and displayed the highest proportion of PUFAs. These results demonstrated that TRF relieved the chronic high temperature affected meat quality by the restored expression of Nrf2/HO-1 anti-oxidative cascade, modified muscle fiber composition, and enriched PUFAs in LTL muscle.
Aquilaria sinensis is a significant resin-producing plant worldwide that is crucial for agarwood production. Agarwood has different qualities depending on the method with which it is formed, and the microbial community structures that are present during these methods are also diverse. Furthermore, the microbial communities of plants play crucial roles in determining their health and productivity. While previous studies have investigated the impact of microorganisms on agarwood formation, they lack comprehensiveness, particularly regarding the properties of the microbial community throughout the entire process from seedling to adult to incense formation. We collected roots, stems, leaves, flowers, fruits and other tissues from seedlings, healthy plants and agarwood-producing plants to address this gap and assess the dominant bacterial species in the microbial community structures of A. sinensis at different growth stages and their impacts on growth and agarwood formation. The bacteria and fungi in these tissues were classified and counted from different perspectives. The samples were sequenced using the Illumina sequencing platform, and sequence analyses and species annotations were performed using a range of bioinformatics tools to assess the plant community compositions. An additional comparison of the samples was conducted using diversity analyses to assess their differences. This research revealed that Listeria, Kurtzmanomyces, Ascotaiwania, Acinetobacter, Sphingobium, Fonsecaea, Acrocalymma, Allorhizobium, Bacillus, Pseudomonas, Peethambara, and Debaryomyces are potentially associated with the formation of agarwood. Overall, the data provided in this article help us understand the important roles played by bacteria and fungi in the growth and agarwood formation process of A. sinensis, will support the theoretical basis for the large-scale cultivation of A. sinensis, and provide a basis for further research on microbial community applications in agarwood production and beyond.
Plant viral diseases cause great losses in agricultural production. Virus cross-protection is a strategy in which a mild virus is employed to shield plants against subsequent infections by severe viral strains. However, this approach is restricted to protection against the same viruses. In this study, we observed that pre-inoculation with apple geminivirus (AGV) reduced the accumulation of secondarily infected heterologous viruses, such as cucumber mosaic virus, potato virus X, and tobacco mosaic virus in Nicotiana benthamiana, tomato, and pepper plants. Transcriptional expression analysis showed that autophagy-related genes were transcriptionally up-regulated upon AGV inoculation at an early stage of infection. Accordingly, autophagic activity was observed to be elevated following AGV infection. Interestingly, AGV accumulation was reduced in autophagy-deficient plants, suggesting that autophagy activation promotes AGV infection in the plant. Moreover, pre-inoculation with AGV provided cross-protection against infection with a phytopathogenic bacterium (Pseudomonas syringae) and fungus (Botrytis cinerea) in Nicotiana species. In summary, our study showed that AGV, an asymptomatic virus, could protect plants against severe viral, fungal, and bacterial diseases to some extent through the activation of autophagy pathways, highlighting its potential as a biocontrol agent for managing a wide range of plant crop diseases in the field.
Drought has a significant, negative impact on crop production; and these effects are poised to increase with climate change. Plants acclimate to drought and water stress through diverse physiological responses, primarily mediated by the hormone abscisic acid (ABA). Because plants lose the majority of their water through stomatal pores on aerial surfaces of plants, stomatal closure is one of the rapid responses mediated by ABA to reduce transpirational water loss. The dynamic changes in the transcriptome of stomatal guard cells in response to ABA have been investigated in the model plant Arabidopsis thaliana. However, guard cell transcriptomes have not been analyzed in agronomically valuable crops such as a major oilseed crop, rapeseed. In this study, we investigated the dynamics of ABA-regulated transcriptomes in stomatal guard cells of Brassica napus and conducted comparison analysis with the transcriptomes of A. thaliana. We discovered changes in gene expression indicating alterations in a host of physiological processes, including stomatal movement, metabolic reprogramming, and light responses. Our results suggest the existence of both immediate and delayed responses to ABA in Brassica guard cells. Furthermore, the transcription factors and regulatory networks mediating these responses are compared to those identified in Arabidopsis. Our results imply the continuing evolution of ABA responses in Brassica since its divergence from a common ancestor, involving both protein-coding and non-coding nucleotide sequences. Together, our results will provide a basis for developing strategies for molecular manipulation of drought tolerance in crop plants.
1. Under 25 μM Cd, it was the hormesis effect on the growth of L. Chuanxiong.
2. Seedlings increased the thickness of root cell wall to chelate and fixate Cd.
3. Seedlings enhanced NH4+ absorption and assimilation, thereby increasing chlorophyll content.
4. Seedlings mainly reduced oxidative stress caused by Cd stress through the GSH/GSSG cycle.
Metalloproteinases are ubiquitous in organisms. Most metalloproteinases secreted by pathogenic microorganisms are also called virulence factors, because they degrade proteins in the external tissues of the host, thereby reducing the host’s immunity and increasing its susceptibility to disease. Zinc metalloproteinase is one of the most common metalloproteinases. In our report, we studied the biological function of zinc metalloprotease FgM35 in Fusarium graminearum and the pathogen–host interaction during infection. We found that the asexual and sexual reproduction of the deletion mutant ΔFgM35 were affected, as well as the tolerance of F. graminearum to metal stress. In addition, deletion of FgM35 reduced the virulence of F. graminearum. The wheat target TaZnBP was screened using a wheat yeast cDNA library, and the interaction between FgM35 and TaZnBP was verified by HADDOCK molecular docking, yeast two-hybrid, Bi-FC, Luc, and Co-IP assays. The contribution of TaZnBP to plant immunity was also demonstrated. In summary, our work revealed the indispensable role of FgM35 in the reproductive process and the pathogenicity of F. graminearum, and it identified the interaction between FgM35 and TaZnBP as well as the function of TaZnBP. This provides a theoretical basis for further study of the function of metalloproteinases in pathogen–host interactions.
Pyroglutamic acid [(5-oxoproline (5-oxp)], a non-protein amino acid, can be converted to glutamate to regulate amino acid metabolism in plants. Its roles in plant adaptation to abiotic stresses, including heat stress, are not well understood. The objectives of this study were to determine whether exogenous application of 5-oxp could promote heat tolerance in cool-season perennial grass species and identify the major metabolic pathways that could be activated or responsive to 5-oxp for enhancing heat tolerance. Perennial ryegrass (Lolium perenne L.) plants were foliar-sprayed with 5-oxp or water (untreated control) prior to and during the exposure to heat stress (35/33 ℃, day/night temperature) or ambient temperature (25/22 ℃, day/night temperature, non-stress control) in controlled-environment growth chambers. Application of 5-oxp improved the heat tolerance of perennial ryegrass, as manifested by the chlorophyll content, photochemical efficiency, cell membrane stability, and antioxidant enzyme activities increasing by 31.2%, 25.7%, 37.2%, and 57.1-258.3%, as well as the reduction in hydrogen peroxide production by 36.8%. Metabolic profiling identified metabolites up-regulated by 5-oxp that are involved in the metabolic pathways of carbon assimilation in photosynthesis, glycolysis and the tricarboxylic acid cycle of respiration, proteinogenic amino acid metabolism, glutathione metabolism, and nucleotide metabolism for DNA or RNA synthesis and ATP generation. The up-regulation or activation of those metabolic processes could contribute to 5-oxp-mediated enhancement in the heat tolerance of perennial ryegrass.
Salt bladders, specialized structures on the surface of quinoa leaves, secrete Na+ to mitigate the effects of the plant from abiotic stresses, particularly salt exposure. Understanding the development of these structures is crucial for elucidating quinoa’s salt tolerance mechanisms. In this study, we employed transmission electron microscopy to detail cellular differentiation across the developmental stages of quinoa salt bladders. To further explore the developmental trajectory and underlying molecular mechanisms, we conducted single-cell RNA sequencing on quinoa protoplasts derived from young leaves. This allowed us to construct a cellular atlas, identifying 13 distinct cell clusters. Through pseudotime analysis, we mapped the developmental pathways of salt bladders and identified regulatory factors involved in cell fate decisions. GO and KEGG enrichment analyses, as well as experimental results, revealed the impacts of salt stress and the deprivation of sulfur and nitrogen on the development of quinoa salt bladders. Analysis of the transcription factor interaction network in pre-stalk cells (pre-SC), stalk cells (SC), and epidermal bladder cells (EBCs) indicated that TCP5, YAB5, NAC078, SCL8, GT-3B, and T1P17.40 play crucial roles in EBC development. Based on our findings, we developed an informative model elucidating salt bladder formation. This study provides a vital resource for mapping quinoa leaf cells and contributes to our understanding of its salt tolerance mechanisms.
Developmental plasticity is critical for plants to adapt to constantly changing environments. Plant root hairs display dramatic plasticity under different environments and therefore play crucial roles in defense against environmental stressors. Here, we report the isolation of an Arabidopsis mutant, salinity over-sensitive mutant 1–1 (som1-1), also exhibiting root hair developmental defects. Map-based cloning and allelic analyses confirmed that som1-1 is a new mutant allele of SPIRRIG (SPI), which encodes a Beige and Chediak Higashi (BEACH) domain-containing protein. SPI has been reported to facilitate actin dependent root hair development by temporally and spatially regulating the expression of BRICK1 (BRK1), a subunit of the SCAR/WAVE actin nucleating promoting complex. Our living cell imaging examinations revealed that salt stress induces an altered actin organization in root hair that mimics those in the spi mutant, implying SPI may respond to salt stress induced root hair plasticity by modulating actin cytoskeleton organization. Furthermore, we found BRK1 is also involved in root hair developmental change under salt stress, and overexpression of BRK1 resulted in root hairs over-sensitive to salt stress as those in spi mutant. Moreover, based on biochemical analyses, we found BRK1 is unstable and SPI mediates BRK1 stability. Functional loss of SPI results in the accumulation of steady-state of BRK1.
Drought is a prevalent abiotic stress that commonly affects the quality and yield of tea. Although numerous studies have shown that lignin accumulation holds significant importance in conferring drought tolerance to tea plants, the underlying molecular regulatory mechanisms governing the tea plant's response to drought remain largely elusive. LACCASEs (LACs), which belong to the class of plant copper-containing polyphenol oxidases, have been widely reported to participate in lignin biosynthesis in plants and are implicated in numerous plant life processes, especially in the context of adverse conditions. In this study, we detected the upregulation of CsLAC4 in response to drought induction. Remarkably, the overexpression of CsLAC4 not only substantially increased the lignin content of transgenic Arabidopsis thaliana but also simulated the development of vascular tissues, consequently leading to a significant enhancement in drought tolerance. Moreover, via dual-luciferase assays and transient overexpression in tea leaves, we revealed that CsLAC4 was negatively regulated by the upstream CsmiR397a. Interestingly, the expression of CsmiR397a was downregulated during drought stress in tea plants. Arabidopsis thaliana overexpressing CsmiR397a showed increased sensitivity to drought stress. By transient overexpression of CsmiR397a and CsLAC4 in tea plant leaves, we verified that CsLAC4, which is regulated by CsmiR397a, conferred drought tolerance to tea plants by enhancing lignin biosynthesis. These findings enhance our understanding of the molecular regulatory mechanisms underlying the response of tea plants to drought stress.
Drought and salinity stress pose threats to agricultural production in drylands. Although breeding and genetic modification techniques have been employed to develop drought- and salt-tolerant crops, these methods are costly and risky. Hence, the potential application of endophytic fungi in dryland agriculture is being explored as a novel approach in improving plant tolerance to environmental stress. In this study, endophytic fungi with growth-promoting effects were isolated, characterized, and evaluated in terms of their ability to confer drought and stress tolerance to their host plants. Seventy-seven growth-promoting endophytic fungi belonging to 20 genera were isolated from barley roots; of these, strain T-2 elicited remarkable effects on plant growth parameters. Phylogenetic analysis revealed that strain T-2 belongs to genus Leptosphaeria, whose members are generally known as plant pathogens. Thus, Leptosphaeria sp. strain T-2 is a novel endophytic fungus that promotes plant growth. Moreover, it alleviated growth inhibition caused drought and salinity stress, as evidenced by the survival and maintained health of lettuce plants inoculated with strain T-2. The results of this study suggest that strain T-2 can be applied as a biofertilizer to improve agricultural production in drylands.
Fruit quality and yield are reduced when cucumber (Cucumis sativus L.) plants are exposed to low temperature (LT) stress, yet, the inheritance and genes linked to cold tolerance in adult plants have not been reported yet. Here, the LT-tolerance of 120 cucumber accessions representing four ecotypes were evaluated by GWAS, and also, in 140 recombinant inbred lines (RILs) derived from a biparental cross. Plants were exposed to naturally occurring LT environments in a plastic greenhouse, in winter 2022, and 2023, and a low temperature injury index (LTII) was employed to evaluate plant performance. Genetic analysis revealed that the LT-tolerance evaluated in the adult cucumber plants was a multigenic quantitative trait, and that 18 of the 120 accessions were highly LT tolerant by our LTII assessment. Two loci (gLTT1.1 and gLTT3.1) exhibited strong signals that were consistent and stable in two environments. In addition, two QTLs—qLTT1.2 on chromosome (Chr.) 1, and qLTT3.1 on Chr. 3, were discovered in all tests using RIL population derived from a cross between LT-sensitive ‘CsIVF0106’, and LT-tolerant ‘CsIVF0168’. qLTT1.2 was delimited to a 1.24-Mb region and qLTT3.1 was narrowed to a 1.43-Mb region. Interestingly, a peak single nucleotide polymorphism (SNP) at gLTT1.1 and gLTT3.1 was also found in qLTT1.2 and qLTT3.1, respectively. These loci were thus renamed as gLTT1.1 and gLTT3.1. In these regions, 25 genes were associated with the LT response. By identifying differences in haplotypes and transcript profiles among these genes, we identified four candidates: CsaV3_1G012520 (an ethylene-responsive transcription factor) and CsaV3_1G013060 (a RING/U-box superfamily protein) in gLTT1.1, and two RING-type E3 ubiquitin transferases at CsaV3_3G018440 and CsaV3_3G017700 in gLTT3.1 that may regulate LT-tolerance in adult cucumber. Interestingly, the accessions in which the LT-tolerant haplotypes for two loci were pyramided, displayed maximally high tolerance for LT. These findings therefore provide a solid foundation for the identification of LT-tolerant genes and the molecular breeding of cucumber with LT-tolerance.