Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of quinoa salt bladders

Hao Liu , Zhixin Liu , Yaping Zhou , Aizhi Qin , Chunyang Li , Yumeng Liu , Peibo Gao , Qianli Zhao , Xiao Song , Mengfan Li , Luyao Kong , Yajie Xie , Lulu Yan , Enzhi Guo , Xuwu Sun

Stress Biology ›› 2024, Vol. 4 ›› Issue (1) : 47

PDF
Stress Biology ›› 2024, Vol. 4 ›› Issue (1) : 47 DOI: 10.1007/s44154-024-00189-3
Original Paper

Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of quinoa salt bladders

Author information +
History +
PDF

Abstract

Salt bladders, specialized structures on the surface of quinoa leaves, secrete Na+ to mitigate the effects of the plant from abiotic stresses, particularly salt exposure. Understanding the development of these structures is crucial for elucidating quinoa’s salt tolerance mechanisms. In this study, we employed transmission electron microscopy to detail cellular differentiation across the developmental stages of quinoa salt bladders. To further explore the developmental trajectory and underlying molecular mechanisms, we conducted single-cell RNA sequencing on quinoa protoplasts derived from young leaves. This allowed us to construct a cellular atlas, identifying 13 distinct cell clusters. Through pseudotime analysis, we mapped the developmental pathways of salt bladders and identified regulatory factors involved in cell fate decisions. GO and KEGG enrichment analyses, as well as experimental results, revealed the impacts of salt stress and the deprivation of sulfur and nitrogen on the development of quinoa salt bladders. Analysis of the transcription factor interaction network in pre-stalk cells (pre-SC), stalk cells (SC), and epidermal bladder cells (EBCs) indicated that TCP5, YAB5, NAC078, SCL8, GT-3B, and T1P17.40 play crucial roles in EBC development. Based on our findings, we developed an informative model elucidating salt bladder formation. This study provides a vital resource for mapping quinoa leaf cells and contributes to our understanding of its salt tolerance mechanisms.

Keywords

Quinoa / Salt bladders / Single-cell RNA sequencing / Developmental trajectory / Salt tolerance

Cite this article

Download citation ▾
Hao Liu, Zhixin Liu, Yaping Zhou, Aizhi Qin, Chunyang Li, Yumeng Liu, Peibo Gao, Qianli Zhao, Xiao Song, Mengfan Li, Luyao Kong, Yajie Xie, Lulu Yan, Enzhi Guo, Xuwu Sun. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of quinoa salt bladders. Stress Biology, 2024, 4(1): 47 DOI:10.1007/s44154-024-00189-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe M, Katsumata H, Komeda Y, Takahashi T. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development, 2003, 130(4): 635-643

[2]

Adams MA, Richter A, Hill AK, Colmer TD. Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes. Plant Cell Environ, 2005, 28(6): 772-787

[3]

Adolf VI, Jacobsen S-E, Shabala S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot, 2013, 92: 43-54

[4]

Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot, 2007, 58(8): 1957-1967

[5]

Ali A, Maggio A, Bressan RA, Yun DJ. Role and functional differences of HKT1-Type transporters in plants under salt stress. Int J Mol Sci, 2019, 20(5): 1059

[6]

Al-Mushhin AAM, Qari SH, Fakhr MA, Alnusairi GSH, Alnusaire TS, AA, A. L., Latef, A., Ali, O. M., Khan, A. A., Soliman, M. H.. Exogenous myo-inositol alleviates salt stress by enhancing antioxidants and membrane stability via the upregulation of stress responsive genes in Chenopodium quinoa L. Plants, 2021, 10(11): 2416

[7]

Angeli V, Miguel Silva P, Crispim Massuela D, Khan MW, Hamar A, Khajehei F, Graeff-Hönninger S, Piatti C. Quinoa (Chenopodium quinoa Willd.): an overview of the potentials of the “Golden Grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods, 2020, 9(2): 216

[8]

Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 2007, 59(2): 206-216

[9]

Bascuñán-Godoy L, Sanhueza C, Pinto K et al (2018) Nitrogen physiology of contrasting genotypes of Chenopodium quinoa Willd. (Amaranthaceae) Sci Rep 8(1):17524. https://doi.org/10.1038/s41598-018-34656-5

[10]

Bazihizina N, Böhm J, Messerer M, Stigloher C, Müller HM, Cuin TA, Maierhofer T, Cabot J, Mayer KFX, Fella C, Huang S, Al-Rasheid KAS, Alquraishi S, Breadmore M, Mancuso S, Shabala S, Ache P, Zhang H, Zhu JK, Hedrich R, Scherzer S. Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa. New Phytol, 2022, 235(5): 1822-1835

[11]

Bian X, Xing TL, Yang Y, Fan J, Ma CM, Liu XF, Wang Y, He YY, Wang LD, Wang B, Zhang N. Effect of soy protein isolate on physical properties of quinoa dough and gluten-free bread quality characteristics. J Sci Food Agric, 2023, 103(1): 118-124

[12]

Bilkova I, Kjaer A, van der Kooy F et al (2016) Effects of N fertilization on trichome density, leaf size and artemisinin production in artemisia annua leaves. Acta Hortic 1125:369–376. https://doi.org/10.17660/ActaHortic.2016.1125.48

[13]

Böhm J, Messerer M, Müller HM, Scholz-Starke J, Gradogna A, Scherzer S, Maierhofer T, Bazihizina N, Zhang H, Stigloher C, Ache P, Al-Rasheid KAS, Mayer KFX, Shabala S, Carpaneto A, Haberer G, Zhu J-K, Hedrich R. Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa. Curr Biol, 2018, 28(19): 3075-3085.e3077

[14]

Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S. Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Ann Bot, 2014, 115(3): 481-494

[15]

Clark NM, Nolan TM, Wang P, Song G, Montes C, Valentine CT, Guo H, Sozzani R, Yin Y, Walley JW. Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nat Commun, 2021, 12(1): 5858

[16]

Corteggiani Carpinelli E, Telatin A, Vitulo N, Forcato C, D’Angelo M, Schiavon R, Vezzi A, Giacometti GM, Morosinotto T, Valle G. Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol Plant, 2014, 7(2): 323-335

[17]

Cui Z, Huang X, Li M et al (2024) Integrated multi-omics analysis reveals genes involved in flavonoid biosynthesis and trichome development of Artemisia argyi. Plant Sci 346

[18]

Deng YN, Kashtoh H, Wang Q, Zhen GX, Li QY, Tang LH, Gao HL, Zhang CR, Qin L, Su M, Li F, Huang XH, Wang YC, Xie Q, Clarke OB, Hendrickson WA, Chen YH. Structure and activity of SLAC1 channels for stomatal signaling in leaves. Proc Natl Acad Sci U S A, 2021, 118(18): e2015151118

[19]

Elhindi KM, El-Din AS, Elgorban AM. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci, 2017, 24(1): 170-179

[20]

Finken-Eigen M, Röhricht RA, Köhrer K. The VPS4 gene is involved in protein transport out of a yeast pre-vacuolar endosome-like compartment. Curr Genet, 1997, 31(6): 469-480

[21]

Graf BL, Rojas-Silva P, Rojo LE, Delatorre-Herrera J, Baldeón ME, Raskin I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr Rev Food Sci F, 2015, 14(4): 431-445

[22]

Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot, 2011, 62(1): 185-193

[23]

Hu S, Li Y, Shen J. A diverse membrane interaction network for plant multivesicular bodies: roles in proteins vacuolar delivery and unconventional secretion. Front Plant Sci, 2020, 11: 425

[24]

Huang T, Irish VF. Temporal Control of Plant Organ Growth by TCP Transcription Factors. Curr Biol, 2015, 25(13): 1765-1770

[25]

Huang R, Irish VF. An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis. PLoS Genet, 2024, 20(3): e1011203

[26]

Ichino T, Maeda K, Hara-Nishimura I, Shimada T. Arabidopsis ECHIDNA protein is involved in seed coloration, protein trafficking to vacuoles, and vacuolar biogenesis. J Exp Bot, 2020, 71(14): 3999-4009

[27]

Jacobsen SE, Monteros C, Corcuera LJ, Bravo LA, Christiansen JL, Mujica A. Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron, 2007, 26(4): 471-475

[28]

Jacobsen SE, Mujica A, Jensen CR. The Resistance of Quinoa (Chenopodium quinoa Willd.) to Adverse Abiotic Factors. Food Rev Int, 2003, 19(1–2): 99-109

[29]

Jedrzejas MJ. Structure, function, and evolution of phosphoglycerate mutases: comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase. Prog Biophys Mol Biol, 2000, 73(2–4): 263-287

[30]

Kiani-Pouya A, Roessner U, Jayasinghe NS, Lutz A, Rupasinghe T, Bazihizina N, Bohm J, Alharbi S, Hedrich R, Shabala S. Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant Cell Environ, 2017, 40(9): 1900-1915

[31]

Kim JY, Symeonidi E, Pang TY, Denyer T, Weidauer D, Bezrutczyk M, Miras M, Zöllner N, Hartwig T, Wudick MM, Lercher M, Chen LQ, Timmermans MCP, Frommer WB. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant Cell, 2021, 33(3): 511-530

[32]

Kumaran MK, Bowman JL, Sundaresan V. YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell, 2002, 14(11): 2761-2770

[33]

Kuromori T, Fujita M, Urano K, Tanabata T, Sugimoto E, Shinozaki K. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency. Plant Sci, 2016, 251: 75-81

[34]

Li P, Liu Q, Wei Y, Xing C, Xu Z, Ding F, Liu Y, Lu Q, Hu N, Wang T, Zhu X, Cheng S, Li Z, Zhao Z, Li Y, Han J, Cai X, Zhou Z, Wang K, Zhang B, Liu F, Jin S, Peng R. Transcriptional landscape of cotton roots in response to salt stress at single-cell resolution. Plant Commun, 2024, 5(2): 100740

[35]

Liu Y, Ji X, Nie X, Qu M, Zheng L, Tan Z, Zhao H, Huo L, Liu S, Zhang B, Wang Y. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol, 2015, 207(3): 692-709

[36]

Liu Z, Guo C, Wu R, Wang J, Zhou Y, Yu X, Zhang Y, Zhao Z, Liu H, Sun S, Hu M, Qin A, Liu Y, Yang J, Bawa G, Sun X. Identification of the Regulators of Epidermis Development under Drought- and Salt-Stressed Conditions by Single-Cell RNA-Seq. Int J Mol Sci, 2022, 23(5): 2759

[37]

Liu Z, Zhou Y, Guo J, Li J, Tian Z, Zhu Z, Wang J, Wu R, Zhang B, Hu Y, Sun Y, Shangguan Y, Li W, Li T, Hu Y, Guo C, Rochaix JD, Miao Y, Sun X. Global Dynamic Molecular Profiling of Stomatal Lineage Cell Development by Single-Cell RNA Sequencing. Mol Plant, 2020, 13(8): 1178-1193

[38]

McFarlane HE, Shin JJ, Bird DA, Samuels AL. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. Plant Cell, 2010, 22(9): 3066-3075

[39]

Morohashi K, Grotewold E. A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet, 2009, 5(2): e1000396

[40]

Ohashi-Ito K, Bergmann DC. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell, 2006, 18(10): 2493-2505

[41]

Otterbach SL, Khoury H, Rupasinghe T, Mendis H, Kwan KH, Lui V, Natera SHA, Klaiber I, Allen NM, Jarvis DE, Tester M, Roessner U, Schmöckel SM. Characterization of epidermal bladder cells in Chenopodium quinoa. Plant Cell Environ, 2021, 44(12): 3606-3622

[42]

Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU. Termination of asymmetric cell division and differentiation of stomata. Nature, 2007, 445(7127): 501-505

[43]

Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A, 2002, 99(12): 8436-8441

[44]

Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods, 2017, 14(10): 979-982

[45]

Rasouli F, Kiani-Pouya A, Shabala L, Li L, Tahir A, Yu M, Hedrich R, Chen Z, Wilson R, Zhang H, Shabala S. Salinity effects on guard cell proteome in Chenopodium quinoa. Int J Mol Sci, 2021, 22(1): 428

[46]

Rothman JH, Stevens TH. Protein sorting in yeast: Mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell, 1986, 47(6): 1041-1051

[47]

Ruffino AMC, Rosa M, Hilal M, González JA, Prado FE. The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant Soil, 2009, 326(1–2): 213-224

[48]

Ryu KH, Huang L, Kang HM, Schiefelbein J. Single-Cell RNA Sequencing Resolves Molecular Relationships Among Individual Plant Cells. Plant Physiol, 2019, 179(4): 1444-1456

[49]

Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK, Eshed Y, Bowman JL. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell, 2010, 22(7): 2113-2130

[50]

Shabala L, Mackay A, Tian Y, Jacobsen S-E, Zhou D, Shabala S. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant, 2012, 146(1): 26-38

[51]

Shabala S, Bose J, Hedrich R. Salt bladders: do they matter?. Trends Plant Sci, 2014, 19(11): 687-691

[52]

Shi H, Quintero FJ, Pardo JM, Zhu JK. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell, 2002, 14(2): 465-477

[53]

Sun Y, Han Y, Sheng K, Yang P, Cao Y, Li H, Zhu QH, Chen J, Zhu S, Zhao T. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Mol Plant, 2023, 16(4): 694-708

[54]

Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15(2): 89-97

[55]

Tang Y, Zhao CY, Tan ST, Xue HW. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078. PLoS Genet, 2016, 12(8): e1006252

[56]

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol, 2014, 32(4): 381-386

[57]

Tsuda K, Maeno A, Otake A, Kato K, Tanaka W, Hibara KI, Nonomura KI. YABBY and diverged KNOX1 genes shape nodes and internodes in the stem. Science, 2024, 384(6701): 1241-1247

[58]

Vogt T, Ibdah M, Schmidt J, Wray V, Nimtz M, Strack D. Light-induced betacyanin and flavonol accumulation in bladder cells of Mesembryanthemum crystallinum. Phytochemistry, 1999, 52(4): 583-592

[59]

Wang CQ, Wang BS. Ca2+-Calmodulin is Involved in Betacyanin Accumulation Induced by Dark in C3 Halophyte Suaeda salsa. J Integr Plant Biol, 2007, 49(9): 1378-1385

[60]

Wang Y, Gong X, Liu W, Kong L, Si X, Guo S, Sun J. Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber. Plant Physiol Biochem, 2020, 152: 147-156

[61]

Waters S, Gilliham M, Hrmova M. Plant High-Affinity Potassium (HKT) Transporters Involved in Salinity Tolerance: Structural Insights to Probe Differences in Ion Selectivity. Int J Mol Sci, 2013, 14(4): 7660-7680

[62]

Xie H, Wang Q, Zhang P, Zhang X, Huang T, Guo Y, Liu J, Li L, Li H, Qin P. Transcriptomic and Metabolomic Analysis of the Response of Quinoa Seedlings to Low Temperatures. Biomolecules, 2022, 12(7): 977

[63]

Yu H, Zhang L, Wang W, Tian P, Wang W, Wang K, Gao Z, Liu S, Zhang Y, Irish VF, Huang T. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. J Exp Bot, 2021, 72(5): 1809-1821

[64]

Zhang Y, Mutailifu A, Lan H (2022) Structure, development, and the salt response of salt bladders in Chenopodium album L. Front Plant Sci 13:989946. https://doi.org/10.3389/fpls.2022.989946

[65]

Zou C, Chen A, Xiao L, Muller HM, Ache P, Haberer G, Zhang M, Jia W, Deng P, Huang R, Lang D, Li F, Zhan D, Wu X, Zhang H, Bohm J, Liu R, Shabala S, Hedrich R, Zhu JK, Zhang H. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res, 2017, 27(11): 1327-1340

AI Summary AI Mindmap
PDF

348

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/