Utilizing effector-triggered immunity (ETI) as a robust priming agent to protect plants from pathogens

Faisal Islam, Muhammad Saad Shoaib Khan, Huan Chen, Jian Chen

Stress Biology ›› 2024, Vol. 4 ›› Issue (1) : 51.

Stress Biology ›› 2024, Vol. 4 ›› Issue (1) : 51. DOI: 10.1007/s44154-024-00204-7
Highlights

Utilizing effector-triggered immunity (ETI) as a robust priming agent to protect plants from pathogens

Author information +
History +

Cite this article

Download citation ▾
Faisal Islam, Muhammad Saad Shoaib Khan, Huan Chen, Jian Chen. Utilizing effector-triggered immunity (ETI) as a robust priming agent to protect plants from pathogens. Stress Biology, 2024, 4(1): 51 https://doi.org/10.1007/s44154-024-00204-7

References

[]
Dillon MM, Almeida RN, Laflamme B, Martel A, Weir BS, Desveaux D, Guttman DS. Molecular evolution of Pseudomonas syringae type III secreted effector proteins. Front Plant Sci, 2019, 10: 418
CrossRef Google scholar
[]
Dillon MM, Thakur S, Almeida RN, Wang PW, Weir BS, Guttman DS. Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol, 2019, 20: 1-28
CrossRef Google scholar
[]
Islam F, Liu S, Chen H, Chen J. Reprogramming of hormone-mediated antiviral responses in plants by viruses: A molecular tug of war on the salicylic acid-mediated immunity. Mol Plant, 2023, 16(10): 1493-1495
CrossRef Google scholar
[]
Jacob P, Hige J, Dangl JL. Is localized acquired resistance the mechanism for effector-triggered disease resistance in plants?. Nat Plants, 2023, 9: 1184-1190
CrossRef Google scholar
[]
Jones JD, Dangl JL. The plant immune system. Nature, 2006, 444: 323-329
CrossRef Google scholar
[]
Laflamme B, Dillon MM, Martel A, Almeida RN, Desveaux D, Guttman DS. The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science, 2020, 367: 763-768
CrossRef Google scholar
[]
Lonjon F, Lai Y, Askari N, Aiyar N, Bundalovic-Torma C, Laflamme B, Guttman DS. The effector-triggered immunity landscape of tomato against Pseudomonas syringae. Nature Com, 2024, 15: 5102
CrossRef Google scholar
[]
Panno S, Davino S, Caruso AG, Bertacca S, Crnogorac A, Mandić A, Matić S. A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin. Agronomy, 2021, 11: 2188
CrossRef Google scholar
[]
Seymour GB, Rose JK. Tomato molecular biology–special collection of papers for molecular horticulture. Mol Hortic, 2022, 2(1): 21
CrossRef Google scholar
[]
Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A, Sommer A, Nayem S. Systemic propagation of immunity in plants. New Phytol, 2021, 229: 1234-1250
CrossRef Google scholar
[]
Wei HL, Chakravarthy S, Mathieu J, Helmann TC, Stodghill P, Swingle B, Collmer A. Pseudomonas syringae pv. tomato DC3000 type III secretion effector polymutants reveal an interplay between HopAD1 and AvrPtoB. Cell Host Microbe, 2015, 17: 752-762
CrossRef Google scholar
[]
Zhang H, Pei Y, He Q, Zhu W, Jahangir M, Haq SU, Chen R (2023) Salicylic acid-related ribosomal protein CaSLP improves drought and Pst.DC3000 tolerance in pepper. Mol Hortic 3(1):6. https://doi.org/10.1186/s43897-023-00054-3
Funding
National Natural Science Foundation of China(32250410314)

Accesses

Citations

Detail

Sections
Recommended

/