2025-04-14 2016, Volume 31 Issue 5

  • Select all
  • Yanchao Wang , Shixi Zhao

    Carbon was coated on the surface of Li2MnSiO4 to improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 °C and the solid-state method followed by heat treatment at 950 °C. It is shown that the cycling performance is greatly enhanced by carbon coating, compared with the pristine Li2MnSiO4 cathode obtained by the solution method. The initial discharge capacity of Li2MnSiO4/C nanocomposite is 280.9 mAh/g at 0.05 C with the carbon content of 33.3 wt%. The reasons for the improved electrochemical performance are smaller grain size and higher electronic conductivity due to the carbon coating. The Li2MnSiO4/C cathode material obtained by the solid-state method exhibits poor cycling performance, the initial discharge capacity is less than 25 mAh/g.

  • Jiaoqun Zhu , Ruguang Li , Weibin Zhou , Hongguang Zhang , Xiaomin Cheng

    Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3 composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3 particle from 800 to 900 °C for Al2O3 particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3 particles and the enthalpy of phase change of NaCl-Al2O3 material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.

  • Ling Pan , Chenghui Gao

    Molecular dynamics (MD) simulations using the polymer consistent force field (PCFF) were adopted to investigate the pressure and thickness dependent density of squalane film in a nanogap at 373 K, with three different initial film thicknesses, and for a wide range of pressures. The equivalent densities predicted by MD simulations were compared with the empirical data. Results show that the squalane atoms tend to form layers parallel to the confining substrates but the orientations of squalane molecules are irregular throughout the film. In addition, distinct excluded volumes are not found at the interfaces of the film and substrates. Furthermore, with the same initial film thickness h 0, the film thickness h and compressibility decrease with increasing pressure, but the compressibility is similar for films with different initial film thicknesses. The equivalent densities predicted by MD simulations with the maximum initial film thickness (9.44 nm) are accurate to the values of Tait equation. The MD simulation with adequate initial film thickness can accurately and conveniently predict the bulk densities of lubricants.

  • Yanhang Wang , Chengkui Zu , Kun He , Huifeng Zhao , Yonghua Liu

    The effect of Ga2O3 on the structure and properties of calcium aluminate glasses fabricated by vacuum melting process was investigated by Raman spectrum, differential scanning calorimeter (DSC), and infrared spectrum methods. The results show that calcium aluminate glass network only consists of [AlO4] tetrahedral units. With the gradual addition of Ga2O3, the quantity of [GaO4] tetrahedral units increases. Substitution of Ga2O3 for Al2O3 results in a decrease in T g T x, and T p, and an increase in the thermal stable index ΔT. Similarly, the absorption band around 3.0 μm obviously reduces and the transparency in 4.0-6.0 μm rapidly increases with increasing Ga2O3 content. However, the chemical stability of calcium aluminate glasses decreases if Ga2O3 is introduced due to the increasing of [GaO4] units in the glass network.

  • Shuhe Liu , Bin Liu , Yaochun Yao , Peng Dong , Shuchun Zhao

    Two kinds of porous silicon (PS) were synthesized by magnesiothermic reduction of rice husk silica (RHS) derived from the oxidization of rice husks (RHs). One was obtained from oxidization/reduction at 500 °C of the unleached RHs, the other was synthesized from oxidization/reduction at 650 °C of the acidleached RHs. The structural difference of the above PS was compared: the former had a high pore volume (PV, 0.31 cm3/g) and a large specific surface area (SSA, 45.2 m2/g), 138 % and 17 % higher than the latter, respectively. As anode materials for lithium ion batteries, the former had reversible capacity of 1 400.7 mAh/g, 987 mAh/g lower than the latter; however, after 50 cycles, the former had 64.5 % capacity retention (907 mAh/g), which was 41.2 % higher than the latter (555.7 mAh/g). These results showed that the electrochemical performance of PS was significantly affected by its pore structures, and low reduction temperature played the key role in increasing its porosity, and therefore improving its cycling performance.

  • Yan Shi , Ken Sun

    CdSe quantum dots (QDs) were synthesized using diphenylcarbazide (DL) to sequester QDs precursors (Cd2+) in situ. Fluorescence (FL) analysis showed the successive synthesis of QDs could be realized by capping with DL and the binding between DL and Cd2+. The average QDs particle size was about 5-20 nm by high-resolution transmission electron microscopy (HRTEM). Fourier transform infrared (FT-IR) spectra showed that CdSe QDs could be chemically bonded with DL. The formation of QDs-DL-Cr(VI) could lower the fluorescence intensity of QDs. In a certain concentration range, the fluorescence intensity and Cr(VI) concentration presented a linear relationship. As a result, this phenomenon could be used to determine the Cr(VI) concentration in the range of 0-24 ×10−6 mol· L−1.

  • Yong Chen , Huyin Su , Simin Xue , Zhaozhi Li , Cancan Zhang , Qi Chen , Lingfang Xu , Wanqiang Cao , Zhaoxiang Huang

    Various lead-free ceramics have been investigated in search for new high-temperature dielectrics. In particular, Bi4Ti3O12 is a type of ferroelectric ceramics, which is supposed to replace leadcontaining ceramics for its outstanding dielectric properties in the near future. Ferroelectric ceramics of Bi4Ti3O12 made by conventional mixed oxide route have been studied by impedance spectroscopy in a wide range of temperature. X-ray diffraction patterns show that Bi4Ti3O12 ceramics are a single-phase of ferroelectric Bi-layered perovskite structure whether it is calcined at 800 °C or after sintering production. This study focused on the effect of the grain size on the electric properties of BIT ceramics. The BIT ceramics with different grain sizes were prepared at different sintering temperatures. Grain becomes coarser with the sintering temperature increasing by 50 °C, relative permittivity and dielectric loss also change a lot. When sintered at 1 100 °C, r values peak can reach 205.40 at a frequency of 100 kHz, the minimum dielectric losses of four different frequencies make no difference, all close to 0.027. The values of E a range from 0.52 to 0.68 eV. The dielectric properties of the sample sintered at 1 100 °C are relatively better than those of the other samples by analyzing the relationship of the grain, the internal stresses, the homogeneity and the dielectric properties. SEM can better explain the results of the dielectric spectrum at different sintering temperatures. The results show that Bi4Ti3O12 ceramics are a kind of dielectrics. Thus, Bi4Ti3O12 can be used in high-temperature capacitors and microwave ceramics.

  • Jinyang Jiang , Yingjun Yu , Hongyan Chu , Wei Sun , Yun Gao , Wei She

    We investigated the simulation of the cracking and ablation behavior of ferro-siliceous and siliceous nuclear sacrificial concretes. To this end, four type of sacrificial concretes were fabricated, i e, the ferro-siliceous (F) and siliceous (S) plain concretes, and the polypropylene fiber reinforced concretes of the above two (FF, SF). The cracking and ablation behaviors of the sacrificial concretes were investigated by simulation tests, and the simulated elevated temperature was obtained by means of thermite powder. The number and the width of the cracks were compared and the pore size distribution of sacrificial concretes was measured. In addition, the interface and chemical composition of melt at different positions were analyzed, and the ablation depth of the sacrificial concrete crucibles was also measured. It was found that the siliceous concrete shows to be more prone to cracking than the ferro-siliceous concrete due to the higher content of fly ash and lower water to binder ratio; though the ablation depth of siliceous concrete is found to be slightly larger, no clear difference can be detected for the basemat ablation rate.

  • Pinghua Zhu , Xinxin Zhang , Junyong Wu , Xinjie Wang

    The feasibility of using different generations recycled coarse aggregate (RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concretes, the different generations of RCA were recycled by following the repeated mode of ‘concrete-waste concrete-coarse aggregate-concrete’. Moreover, the focus was on ‘three generations’ of repeated RCAs, the RCA was produced by crushing and regenerating the artificial accelerated degraded concrete, the process was designed to follow the nature degradation of the concrete with a coupling action of accelerated carbonation and bending load. The properties of x-generation (x=1, 2 or 3) of repeated RCA were systematically investigated and the compressive and splitting tensile strengths of relating structural concretes(with 70% replacement of x-generation of RCA) were studied accordingly. The results show a competent compressive and splitting tensile strength of 30 MPa at 28th day of structural concretes with all generations of repeated RAC. And the gradual degraded performance of the repeated RCAs was observed with an increased numbers of repetition (1>2>3 generations), the overall performances of all repeated RCAs fulfill the Class III according to Chinese Standards GB25177-2010. Our gained insight demonstrates a feasibility of using at least 3 generations of repeated RCA for the production of normal structural concrete.

  • Qiankun Wang , Peng Li , Yapo Tian , Wei Chen , Chunyi Su

    The feasibility of using coral reef sand (CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm.

  • Qingjun Ding , Huan Wang , Chenguang Hu , Gaozhan Zhang

    By means of 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) combined with deconvolution technique, X-ray diffraction (XRD), scanning electron microscopy (SEM) as well as energy dispersive X-ray system(EDX), the effect of 5 wt% corrosive solutions (viz. 5 wt% Na2SO4, MgSO4, Na2SO4+NaCl and Na2SO4+NaCl+Na2CO3) on C-S-H microstructure in Portland cement containing 30 wt% fly ash was investigated.The results show that, in MgSO4 solution, Mg2+ promotes the decalcification of C-S-H by SO4 2-,increasing silicate tetrahedra polymerization and mean chain length (MCL) of C-S-H. However, the substituting degree of Al3+ for Si4+ (Al[4]/Si) in the paste does not change evidently. Effect of Na2SO4 solution on C-S-H is not significantly influenced by NaCl solution, while the MCL and Al[4]/Si of C-S-H in fly ashcement paste slightly change. However, the decalcification of C-S-H by SO4 2- and CO3 2- attack, as well as the activation of fly ash by SO4 2- attack will increase the MCL and Al[4]/Si, which are both higher than that under Na2SO4 corrosion, MgSO4 or Na2SO4 +NaCl coordination corrosion.

  • Qinglin Zhao , Ciqi Liu , Chengjie Qu , Luping Zeng

    Welan gum is widely applied in environmental admixtures due to its good thickening and rheological properties. With its powerful charge density in the molecular structure, the competitive adsorption between welan gum and other admixtures happened remarkably during the addition process. So controlling the releasing rate of welan gum will be able to improve the competitive adsorption, while having no disadvantages to its thickening and workability at the same time. The investigation of influences of the delay released welan gum (DRWG) on the fluidity and strength of cement mortar, bleeding rate and rheological properties of cement paste, adsorption amount and zeta potential of clinker single mineralogical phases, shows that there will be a better mortar workability and certain improvement in mortar strength with DRWG. For mortar with DRWG, the standing bleeding rate is 0, and there is less thixotropic, less adsorption, and a lower zeta potential value on the surface of clinker mineralogical phases.

  • Meijuan Rao , Mingxia Li , Huaquan Yang , Xiang Li , Yun Dong

    The hydraulic concrete durability under the alternation of freeze-thaw and carbonation has been systematically investigated in this work, where both the micro part and the microscopic characteristics of concrete interface were analyzed based on computed tomography (CT) test and scanning electron microscopy (SEM). Average CT numbers of each section, declined at water-cement ratio of 0.35, increased at 0.45, and changed a little at 0.55. The specimen in the absence of fly ash exhibited less types of hydration products and the surface was observed to be a needle-like ettringite, with a relatively dense overall structure. However, with the increase of fly ash content, pores and micro-cracks of specimen structure increased. Hexagonal flake calcium hydroxide, present in the specimen after the first carbonation, was negligible in the test pieces of the first freezethaw where the main hydration products were ettringite and calcium silicate gel. Regular hexagonal plates of calcium hydroxide exhibited in the interior of the specimen in which charring first occurred but calcium hydroxide rarely existed in the interior of the specimen in which freeze-thaw first occurred.

  • Bawa Samaila Muazu , Xiaosheng Wei , Lei Wang

    Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete’s crack potential. The highest inflection time (t i) obtained from resistivity curve and the final setting time (t f) were used with crack time (t c) in coming up with mathematical models for the prediction of concrete’s cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.

  • Youqiang Huang , Jianxin Lu , Feixiang Chen , Zhonghe Shui

    The chloride permeability and microstructure of persulphated phosphogypsum-slag cement concrete (PPSCC), the Portland slag cement concrete (PSCC) and ordinary Portland cement concrete (OPCC) were investigated comparatively. Some test methods were used to evaluate the chloride permeability and explain the relationship between the permeability and microstructure of concrete. The results show that the resistance to chloride penetration in PPSCC is significantly better than that in OPCC, the reasons are as follows: 1) the slag in PPSCC is activated by clinker (alkali activation) and phosphogypsum (sulfate activation), forming more low Ca/Si C-S-H gel and gel pores below 10 nm than OPCC, improving the resistance to chloride penetration; 2) the hydration products of PPSCC have a much stronger binding capacity for chloride ions; and 3) in the same mix proportion, PPSCC has a better workability without large crystals calcium hydroxide in the hydration products, the interfacial transition zone (ITZ) is smoother and denser, which can cut off the communicating pores between the pastes and aggregates.

  • Liangwei Lou

    Extensive researches have been carried out on the conventional sulfate attack, while it has been found that the thaumasite form of sulfate attack (TSA), sulfate attack at low temperature, has just been discovered and its mechanism is not well understood so far. In this study, the sulfate attack of cement paste incorporating 30% mass of limestone powder was investigated. After 20 °C water cured for 7, 14, and 28 days, respectively, 20 mm cube specimens were exposed in a 5% magnesium sulfate solution at (6 ±1) °C for periods up to 240 days. Their appearance change, compressive strength development were examined at different storage time, and selected paste samples were examined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results indicate that all Portland-limstone cement pastes suffer from appearance deterioration to some extent. The compressive strength of cement paste initially increases and after 120 days decreases with increasing exposed period. In addition, the cement paste with short curing time is more susceptible to sulfate attack, which directly leads to the formation of non-binder thaumasite crystal accompanied by the formation of ettringite, gypsum and brucite, and becomes a white, mushy, and incohesive matrix. Additionally, the extent of sulfate attack is greater and the formation of thaumasite is observed earlier for shorter curing time.

  • Jipeng Zhu , Zongjin Li , Yamei Zhang

    Single-component epoxy cement system is an interesting material used in construction engineering, and it is different from traditional two-component epoxy-cement system. We studied the interaction mechanism of single-component epoxy-cement system only in the range of macro mechanical performances, and used the cement and single-component epoxy directly to investigate the interaction between the both. Solidstate 13C NMR, FT-IR, Raman spectroscopy and XRD were employed to trace the change of the system. Results showed that the epoxide rings in cementitious environment had been opened by cement ingredients. It was true that single-component epoxy could be used as reactive additive in cementitious system.

  • Hong Xu , Zhiquan Wu , Xiaoru Wang , Xin Zhang , Jiping Ren , Yang Shi , Zepu Wang , Liwei Wang , Changhua Liu

    Corrosion of Mg–Y alloy was studied using electrochemical evaluations, immersion tests and SEM observations. Corrosion mechanisms of Mg-(0.25 and 2.5) Y alloy and Mg-(5, 8, and 15) Y alloy were uniform corrosion and pitting corrosion respectively, and the content of Mg24Y5 phases determined its effect acting as cathode to accelerate the corrosion or corrosion barrier to inhibit the corrosion. Corrosion resistance of Mg-(0.25, 2.5, 5, 8, and 15) Y alloys was as follows: Rt(Mg-0.25Y) < Rt(Mg-8Y) < Rt(Mg-15Y) < Rt(Mg-5Y) < Rt(Mg-2.5Y). Y could significantly improve the corrosion resistance of the Mg-Y alloy, but the excess of Y deteriorated the corrosion resistance of the Mg-Y alloy. The optimum content of Y in the studied alloys was 2.5%.

  • Yongjun Hu , Huiting Zheng

    The effects of ultrasonic vibration temperature on the microstructure of semisolid Sn-52Bi alloy and mechanical properties were investigated. The results show that the microstructure and mechanical properties are improved obviously after the ultrasonic treatment. Nearly round and uniformly distributed primary Sn phase particles were obtained under the cavitation and acoustic streaming caused by ultrasonic treatment. The best effects of ultrasonic treatment on microstructure and mechanical properties were obtained with the ultrasonic vibration for 120 s at 140 °C. The elongation of semisolid Sn-52Bi alloy treated by ultrasonic vibration for 120 s at 140 °C was 42% and increased by 156.09% compared to conventional liquid casting Sn-52Bi alloy without ultrasonic vibration. It is a feasible and effective method to adopt the semisolid metal forming technology assisted with ultrasonic vibration to improve the ductility of Sn-Bi alloys.

  • Jianqiang Zhang , Yi Tang , Guodong Zhang , Xuan Zhao , Jialin Guo , Chuanhong Luo

    The maximum principal stress, von Mises equivalent stress, equivalent creep strain, stress triaxiality in dissimilar metal welded joints between austenitic (HR3C) and martensitic heat-resistant steel (T91) are simulated by FEM at 873 K and under inner pressure of 42.26 MPa. The results show that the maximum principal stress and von Mises equivalent stress are quite high in the vicinity of weld/T91 interface, creep cavities are easy to form and expand in the weld/T91 interface. There are two peaks of equivalent creep strains in welded joint, and the maximum equivalent creep strain is in the place 27-32 mm away from the weld/T91 interface, and there exists creep constrain region in the vicinity of weld/T91 interface. The high stress triaxiality peak is located exactly at the weld/T91 interface. Accordingly, the weld/T91 interface is the weakest site of welded joint. Therefore, using stress triaxiality to describe creep cavity nucleation and expansion and crack development is reasonable for the dissimilar metal welded joint between austenitic and martensitic steel.

  • Monika Strzelecka , Józef Iwaszko , Marcin A. Malik

    The main objective of the study was the modification of the surface layer of magnesium alloy by the CO2 laser. The studied material was the commercial AZ91 magnesium alloy. The effectiveness of the alternations caused by the remelting process was verified on the basis of microscopic observation and corrosion investigations, i e, recording of potentiodynamic polarization curves, electrochemical noise measurements and hydrogen evolution rate measurements. For the adopted range of the treatment parameters, favourable changes were observed in the surface layer such as the refinement of structure and more uniform arrangement of individual phases. As a consequence of those favourable structural changes the improvement of the corrosion resistance of the alloy was achieved in comparison to its non-remelted equivalent. For the treated material corrosion rates expressed as corrosion current densities were at least three times lower than the appropriate values for the untreated alloy comparing them for the same period of samples immersion in the test solution. The obtained results have confirmed the effectiveness of the applied surface treatment resulting in favourable changes in the structure and corrosion properties of the AZ91 magnesium alloy.

  • Kunyu Shi , Lihong Xue , Youwei Yan , Laijun Zhao

    The ultrafine crystalline CuCr50(Cr 50 wt%) alloys were fabricated by a combination of mechanical alloying and spark plasma sintering process. The effects of milling time on crystallite size and solid solubility of the CuCr50 composite powders were investigated. The results showed that crystallite size of powders decreases gradually and solid solubility of Cr in Cu was extended with increasing milling time. The minimal crystallite size about 10 nm and the maximum solid solubility about 8.4 at% (i e, 7 wt%) were obtained at 60 h. The microstructure of ultrafine crystalline CuCr50 alloy was analyzed by SEM and TEM, which contains two kinds of size scale Cr particles of 2 μm and 50-150 nm, distributing homogeneously in matrix, respectively. The arc erosion characteristics of ultrafine crystalline CuCr50 alloy were investigated by the vacuum contact simulation test device in low D.C. voltage and low current (24 V/10 A). A commercial microcrystalline CuCr50 alloy was also investigated for comparison. Experiments indicate that the cathode mass loss of ultrafine crystalline CuCr50 contact material is higher than that of microcrystalline CuCr50 material, but its eroded surface morphology by the arc is uniform without obvious erosion pits. While the surface of microcrystalline CuCr50 contact is seriously eroded in local area by the arc, an obvious erosion pit occurred in the core part. Therefore, the ability of arc erosion resistance of ultrafine crystalline CuCr50 alloy is improved compared to that of microcrystalline CuCr50 material.

  • Kai Chen , Xiaoping Liu , Xiaozhen Liu , Tianxu Meng , Qi Guo , Zhenxia Wang , Naimin Lin

    A duplex treatment of plasma Zr-alloying and plasma nitriding was used to improve the tribological properties of Ti-6Al-4V. The microstructure of the Zr-N composite (alloyed) layer formed on Ti-6Al-4V and its hardness, friction and wear properties were investigated by using OM, SEM, GDOES, EDS, microhardness tester as well as ball-on-disk tribometer. The results of microstructural analysis show that the alloyed layer is compact and uniform and is mainly composed of ZrN, TiN0.3 and AlN. A very tiny adhesive and slight oxidation wear is the primary wear mechanism for the modified Ti-6Al-4V. The tribological property is improved significantly after the duplex treatment. The good combination of antifriction and wear resistance for modified Ti-6Al-4V is mainly attributed to the higher surface hardness of metal nitrides formed on the surface and enhanced supporting of the Zr-diffusing layer.

  • Wenchang Wang , Ling Zhang , Dejun Kong

    The TiN, TiAlN, and TiAlSiN coatings were prepared on YT14 cutting tool surface with CAIP (cathode arc ion plating), the surface morphologies and phases were analyzed with FESEM (field emission scanning electron microscopy), and XRD (X-ray diffraction), respectively, and the coating parameters such as 3D surface micro-topography, grain size, surface height, hierarchy, profile height, and power spectral density, etc, were measured with AFM (atomic force microscope). The results show that the phases of TiN, TiAlN, and TiAlSiN coatings are TiN, TiN+TiAlN, TiN+Si3N4+TiAlN, respectively, while the surface roughness S a of TiN, TiAlN, and TiAlSiN coatings is 75.3, 98.9, and 42.1 nm, respectively, and the roughness depth S k is 209, 389, and 54 nm, respectively, the sequence of average grain sizes is TiAlN>TiN>TiAlSiN. The surface bearing index S bi of TiN, TiAlN, and TiAlSiN coatings is 0.884, 1.01, and 0.37, respectively, and the sequence of surface bearing capability is TiAlN>TiN>TiAlSiN. At the lower wavelength (102-103 nm), the power spectral densities have a certain correlation, and the sequence of TiN>TiAlN>TiAlSiN, while the correlation is low at the higher wavelength (>103 nm).

  • Heping Liu , Feng’er Sun , Hu’er Sun , Bin Liu , Yi Wang , Xuejun Jin

    A novel design scheme of hot stamping, quenching and partitioning process was conducted in a quenchable boron steel to obtain the nanometric duplex microstructure comprising ultrafine retained austenite and martensite. It is shown that the materials possess excellent mechanical properties and the ductility can be further improved without compromising the strength. The newly treated steel shows excellent mechanical properties and the total elongation of the steel increases from 6.6% to 14.8% compared with that of hot stamped and quenched steel. Therefore, this kind of steel has become another group of advanced high-strength steels. The microstructure which is mainly responsible for such excellent mechanical properties was investigated.

  • Yanwei Sui , Kun Feng , Cheng Cheng , Xiao Chen , Jiqiu Qi , Yezeng He , Qingkun Meng , Fuxiang Wei , Zhi Sun

    Pouring temperature and time are the most important influencing factors on interfacial reaction during the centrifugal casting. When cast at high temperatures, the crucible becomes brittle and prone to cracking, and shows a low stability. In this paper, we studied the centrifugal casting of Ti-47.5-Al-2.5V-1Cr alloy, and explored the effects of pouring temperature on the interfacial reaction. Castings at 1 600, 1 650, and 1 700 °C were obtained by controlling the other parameters constant in the experiments. The microstructure, elemental distribution, thickness of the reaction layer and phase composition of the castings at the interface were studied. The results show that the thickness at the interfacial reaction layer is increased by raising the pouring temperature. The elements in the mold and the matrix were double-diffused and reacted at the interface during the casting process, and formed solid solutions with the precipitation of many new phases such as Al2O3 and TiO2. The roughness of interface structure and layer thickness of reaction increase with the rise of temperature, and the interfacial reaction is more intense. There is a minimum layer thickness of the reaction layer that is 80 μm when the temperature is 1 600 °C.

  • Tengfei Cui , Daoxin Liu , Xiaohua Zhang , Shouming Yu

    The effect of thermal shock, in an accelerated-corrosion environment spectrum, on the fatigue and corrosion behavior of 7B04-T6 aluminum alloy, was determined. The environment spectrum consists of two modules, namely: salt-spray corrosion and thermal shock. The effect of thermal shock on the mechanical properties was determined via tensile tests; SEM, DCS, and XRD were used to determine the effect of thermal shock on the corrosion products. In addition, the corrosion resistance of the products was ascertained through electrochemical testing. The results show that the mechanical properties and fatigue life of the aluminum alloy will decline with prolonged thermal shock time. The thermal shock process may result in denser surface corrosion products than those formed on the no thermal shock specimens, and transformation of some Al (OH)3 into AlOOH. AlOOH may have resulted in improved corrosion resistance and hence a lower decrease in the fatigue life after corrosion, compared with that of the no thermal shock specimen. Repeated corrosion/thermal shock may have delayed further decease in the fatigue life. Therefore, selection of an appropriate equivalent thermal shock temperature and time was essential for designing the environmental spectrum.

  • Likun Ma , Yiqing Chen , Lihua Liu , Yong Su , Guangchen Xu , Hongjiao Fang

    Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg (A390/AM60) bi-metallic samples, the interface microstructures are the research points, which directly influence the mechanical properties. It is, therefore, of vital importance to find a method to improve the interface microstructures. This research focused on the effect of the calcium (Ca) addition in the liquid Mg alloys and the heat treatment on the A390/AM60 interface microstructures of the bi-metallic samples. The testing results showed that, with Ca addition in AM60, owing to two possible reasons, the interface microstructure and the shear strength of the A390/AM60 bi-metallic samples could be improved. The heat treatment could further improve the interface microstructure and the mechanical properties by dissolving β-Mg17Al12 into α-Mg and destroying the Mg2Si layer structure.

  • Xuelong Fu , Yubing Hu , Jie Tao

    The objective of this work is to study the synthesis of copper-alumina nanocomposites using the coprecipitation process and hot-pressing method, and investigate their mechanical properties. The effects of calcination temperature on the average size of composite particles and chemical composition after calcination were also analyzed. The sintering parameters including sintering temperature, hot pressure and packing time were optimized to fabricate the alumina nanoparticles reinforced copper matrix composites (CMCs). The density, microhardness and tribological properties of the CMCs reinforced with 1 wt%, 2 wt%, 3 wt%, 4 wt% and 5 wt% of alumina nanoparticles were investigated correspondingly. The results showed that the optimum preparation parameters for the CMCs were 900 °C of hot pressing temperature, 27.5 MPa of hot pressure and 2 hrs of packing time. The CMC reinforced with 2 wt% of alumina nanoparticles had the lowest wear rate, with the relative wear resistance of 3.13.

  • Xiaoqiang Luo , Zhengyang Li , Xiaojiao Shi , Qingzhi Yan

    A novel micro fused-casting for metal (MFCM) process for producing A356 aluminum alloy slurry was proposed. MFCM means that the refined metal slurry is pressed out from the outlet of bottom of crucible to the horizontal movable plate. With the aid of 3D manufacturing software, the melt is solidified and formed layer by layer. The stirring could keep the ingredients and the heat diffusion of metal slurry uniform in the crucible due to the shear force breaking down the dendrite arms. The solidus and liquidus temperatures of A356 alloy were 559.2 and 626.3 °C, respectively, which were measured by differential scanning calorimetry (DSC). Effect of different stirring velocities of MFCM on the microstructure and mechanical properties of A356 slurry was investigated with the pouring temperature controlled at 620 °C. The microstructure and mechanical performance were the best when the stirring velocity was 1 200 r/min in MFCM. The microstructures of the A356 aluminum alloy slurry were mainly composed of fine spherical or rose grains. The average roundness and average grain size reached 2.2 and 41 μm and the tensile strength of A356 alloy slurry reached 207.8 MPa, while the average vickers hardness was 81.1 HV.

  • Yong Xu , Anlu Zhao , Xinlong Wang , Hui Xue , Feilong Liu

    In order to lower the imidization temperature of polyamic acids (PAA), the catalytic activities of the curing agents p-hydroxybenzoic acid (PHA), quinoline (QL), benzimidazole (BI), benzotriazole (BTA), triethylamine (Et3N) and 1, 8-diazabicyclo [5.4.0]undec-7-ene (DBU) were investigated in the process of thermal imidization of PAA. In addition, the effect of these various curing agents on the thermal stabilities and mechanical properties of the resultant polyimide (PI) films was determined. Quinoline was found to be an effective curing accelerator in the use of two-step method for synthesizing PI. Due to its moderate base strength, low steric crowding effect and moderate boiling point, quinoline could not only accelerate PAA to achieve imidization completely at 180 °C, but also maintain the mechanical properties and thermal stability of the ordinary PI film. Any residual quinoline could be removed from PI films by heating at 250 °C for 4 h.

  • Hyeonuk Hwang , Myunggyun Kim , Antonymutua Nzioka , Youngju Kim , Imranqureshi Tahir , Caozheng Yan

    PVC (polyvinyl chloride) was isolated from waste plastic before manufacturing RPF (refuse paper & plastic fuel), and the characteristics of manufactured RPF including properties, calorific value, pyrolysis, chlorine content and kinetics analysis were analyzed. Based on the result of TGA (Thermogravimetric analysis), the kinetics characteristics was analyzed by using Kissinger method and Ozawa method which are the most common methods for obtaining activation energy, and the experimental conditions of TGA were set as follows: in a nitrogen atmosphere, with gas flow rate of 20 mL/min, heating rate of 5-50 °C/min, and maximum temperature of 800 °C. In conclusion, the activation energy showed a tendency to gradually increase by a rise of reaction rate. Although the activation energy with pyrolysis of RPF was irregularly scattered, it was shown that the activation energy was stabilized by co-pyrolysis of RPF and additives (rice bran and sawdust).

  • Zeli Xiao , Yongmin Guo , Baozong Li , Yi Li

    Single-handed helical carbonaceous materials attracted much attention for varieties of potential applications. Herein, single-handed helical 1, 4-phenylene bridged polybissilsesquioxane nanofibers were prepared through a supramolecular templating approach using a pair of enantiomers. After carbonization at 700 °C for 2.0 h and removal of silica using HF aqueous solution, single-handed helical carbonaceous nanofibers were obtained. The obtained samples were characterized using the field-emission scanning electron microscopy, transmission electron microscopy, N2 sorptions, X-ray diffraction, Raman spectroscopy and diffuse reflectance circular dichroism (DRCD). The Raman spectrum indicated that the carbon was amorphous. The DRCD spectra indicated that the carbonaceous nanofibers exhibited optical activity. The surface area of the left-handed helical carbonaceous nanofibers was 907 m2/g. Such material has potential applications as chirality sensor and supercapacitor electrode.

  • Maoyong Zhi , Wanxia Huang

    Epoxy/graphene nanoplatelets (GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy (FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy (FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis (TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading (1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability.

  • Xianhui Tang , Baozong Li , Yi Li , Yonggang Yang

    Poly{bis[4-(4’-(S)-2-methylbutoxy)biphenyloxy]phosphazene}(PP-C) was designed and successfully synthesized, and then characterized by means of FT-IR spectroscopy, 1H- and 31P-NMR, GPC spectroscopy, wide angle X-ray diffraction and differential scanning calorimetry. The results indicated that for PP-C, the M w is 2.18×105 and the PDI is 1.96. PP-C was a kind of crystallized polymer with a crystallizing point of -2.0 °C and a melting point of 28 °C. The conformational chirality of the PP-C molecules was studied using circular dichroism spectrum. It was found that in dilute THF solution, the biphenyl groups in the PP-C molecules twisted randomly. However, when the PP-C formed aggregates, the biphenyl groups tended to twist single-handedly, which was controlled by the adjacent chiral alkoxy groups.

  • Fei Cheng , Yi Lin , Kang Zhao , Puxin Zhu

    A plasticizer triethylene glycol maleate (TEG-MA) was synthesized. The dominated monoester of moderate hydrophobicity with apparent oil-water partition coefficient of 0.042 in the product was confirmed by acid value determination, HPLC and FTIR. Its plasticizing effect on oxidized starch was manifested by crystallization, aging behaviour, moisture absorption, and mechanical performance. X-ray diffraction data showed that the relative crystallinity of the plasticized starch decreased. Both the crystal and the crystallinity of starch films were rarely changed in aging. Moisture absorption relied on the ester content and relative humidity. The elongation at break increased significantly with plasticizer content more than 10% in the matrix.

  • Shan Zhou , Yang Guo , Peijun Wang , Wei Fu , Shiqian Xu , Bin Zhang

    To evaluate the retention properties of the novel ‘C’-shaped molar bands at a laboratory level. Resin-modified glass ionomer cement (RMGIC) was used as a luting agent for the novel C-shaped molar band. The mechanical properties of the band were examined and the retention performance was characterized in the mesial, distal and vertical directions. A clinical trial was conducted using a spilt-mouth design on 50 patients. The novel C-shaped molar bands fit most molars without a repeated try-in process.The use of both nano-HA coating and RMGIC enhanced the tensile (8.00 ± 1.8 MPa) and shear strengths (27.17 ± 8.6 MPa) of the molar bands, leading to high retention in vertical, mesial and distal directions (p < 0.001). In clinical trials, the C-shaped molar bands had a failure rate (15%) comparable to that of traditional bands, and 93% of the failed bands demonstrated an adhesive remnant index score of 0, corroborating the observation that no luting agent residue remained on the tooth surface in most cases. The novel C-shaped molar bands appear to be a promising appliance that requires further clinical investigations, and may be used effectively in orthodontics.