Microstructure and wear behavior of Ti-6Al-4V treated by plasma Zr-alloying and plasma nitriding

Kai Chen , Xiaoping Liu , Xiaozhen Liu , Tianxu Meng , Qi Guo , Zhenxia Wang , Naimin Lin

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 1086 -1092.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 1086 -1092. DOI: 10.1007/s11595-016-1494-5
Metallic Materials

Microstructure and wear behavior of Ti-6Al-4V treated by plasma Zr-alloying and plasma nitriding

Author information +
History +
PDF

Abstract

A duplex treatment of plasma Zr-alloying and plasma nitriding was used to improve the tribological properties of Ti-6Al-4V. The microstructure of the Zr-N composite (alloyed) layer formed on Ti-6Al-4V and its hardness, friction and wear properties were investigated by using OM, SEM, GDOES, EDS, microhardness tester as well as ball-on-disk tribometer. The results of microstructural analysis show that the alloyed layer is compact and uniform and is mainly composed of ZrN, TiN0.3 and AlN. A very tiny adhesive and slight oxidation wear is the primary wear mechanism for the modified Ti-6Al-4V. The tribological property is improved significantly after the duplex treatment. The good combination of antifriction and wear resistance for modified Ti-6Al-4V is mainly attributed to the higher surface hardness of metal nitrides formed on the surface and enhanced supporting of the Zr-diffusing layer.

Keywords

Ti-6Al-4V / plasma Zr-alloying / plasma nitriding / friction / wear

Cite this article

Download citation ▾
Kai Chen, Xiaoping Liu, Xiaozhen Liu, Tianxu Meng, Qi Guo, Zhenxia Wang, Naimin Lin. Microstructure and wear behavior of Ti-6Al-4V treated by plasma Zr-alloying and plasma nitriding. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(5): 1086-1092 DOI:10.1007/s11595-016-1494-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bansal D G, Eryilmaz O L, Blaua P J. Surface Engineering to Improve the Durability and Lubricity of Ti6Al4V Alloy[J]. Wear, 2011, 271: 2006-2015.

[2]

Chen Y K, Zheng X B, Xie Y T, et al. Antibacterial Properties of Vacuum Plasma Sprayed Titanium Coatings after Chemical Treatment[J]. Surf. Coat. Technol., 2009, 204: 685-690.

[3]

Mello C B, Uedaa M, Silvac M M, et al. Tribological Effects of Plasma Immersion Ion Implantation Heating Treatments on Ti6Al4V Alloy[J]. Wear, 2009, 267: 867-873.

[4]

Qu J, Lu X, Li D, et al. Silver/hydroxyapatite Composite Coatings on Porous Titanium Surfaces by Sol-gel Method[J]. J. Biomed. Mater. Res. B. Appl. Biomater., 2011, 97: 40-48.

[5]

Jia Z F, Wang P, Xia Y Q, et al. Tribological Behaviors of Diamondlike Carbon Coatings on Plasma Nitrided Steel Using Three BN-containing Lubricants[J]. Appl. Surf. Sci., 2009, 255: 6666-6674.

[6]

Grun R, Gunther H. Plasma Nitriding in Industry Problems, New Solutions and Limits[J]. Mater. Sci. Eng., 1991, 140: 435-441.

[7]

Yerramareddy S, Bahadur S. Effect of Operational Variables, Microstructure and Mechanical Properties on the Erosion of Ti6Al4V[J]. Wear, 1991, 142: 253-263.

[8]

Tian Y S, Chen C Z, Chen L B, et al. Wear Properties of Alloyed Layers Produced by Laser Surface Alloying of Pure Titanium with B4C and Ti Mixed Powders[J]. J. Mater. Sci., 2005, 40: 4387-4390.

[9]

Budinski K G. Tribological Properties of Titanium Alloys[J]. Wear, 1991, 151: 203-217.

[10]

Wang Z X, He Z Y, Wang Y Q, et al. Microstructure and Tribological Behaviors of Ti6Al4V Alloy Treated by Plasma Ni Alloying[J]. Appl. Surf. Sci., 2011, 257: 10267-10272.

[11]

Alonso F, Rinner M, Loinaz A, et al. Characterization of Ti-6Al-4V Modified by Nitrogen Plasma Immersion Ion Implantation[J]. Surf. Coat. Technol, 1997, 93: 305-308.

[12]

Fukumoto S, Tsubakino H, Inoue S. Surface Modification of Titanium by Nitrogen Ion Implantation[J]. Mater. Sci. Eng., 1999, 263: 205-209.

[13]

Han S H, Kim H D, Lee Y, et al. Plasma Source Ion Implantation of Nitrogen, Carbon and Oxygen into Ti-6Al-4V Alloy[J]. Surf. Coat. Technol., 1996, 82: 270-276.

[14]

Khaled M, Yilbas B S, Shirokoff J. Electrochemical Study of Laser Nitrided and PVD TiN Coated Ti-6Al-4V Alloy: the Observation of Selective Dissolution[J]. Surf. Coat. Technol, 2001, 148: 46-54.

[15]

Lim S H N, McCulloch D G, Russo S, et al. Using PVD and a Plasma Immersion Ion Implantation System[J]. Nucl. Instrum. Methods B, 2002, 190: 723–727

[16]

Yilbas B S, Hashmi M S J, Shuja S Z. Laser Treatment and PVD TiN Coating of Ti-6Al-4V Alloy[J]. Surf. Coat. Technol., 2001, 140: 244-250.

[17]

Chou W J, Yu G P, Huang J H. Corrosion Resistance of ZrN Films on AISI 304 Stainless Steel Substrate[J]. Surf. Coat. Technol., 2003, 167: 59-67.

[18]

Pilloud D, Dehlinger A S, Pierson J F, et al. Reactively Sputtered Zirconium Nitride Coatings: Structural, Mechanical, Optical and Electrical Characteristics[J]. Surf. Coat. Technol., 2003, 174: 338-344.

[19]

Atar E, Sabri E K, Cimenoglu H. Sliding Wear Behaviour of ZrN and (Zr, 12 wt%Hf)N Coatings[J]. Tribol. Int., 2006 297-302.

[20]

Budke E, Krempel-Hesse J, Maidhof H, et al. Decorative Hard Coatings with Improved Corrosion Resistance[J]. Surf. Coat. Technol., 1999, 112: 108-113.

[21]

Ramos H J, Valmoria N B. Thin-film Deposition of ZrN Using a Plasma Sputter-type Negative Ion Source[J]. Vacuum, 2004, 73: 549-554.

[22]

Lo’Pez G, Staia M H. High-temperature Tribological Characterization of Zirconium Nitride Coatings[J]. Surf. Coat. Technol., 2005, 200: 2092-2099.

[23]

Brugnoni C, Lanza F, Macchi G, et al. Evaluation of the Wear Resistance of ZrN Coatings Using Thin Layer Activation[J]. Surf. Coat. Technol., 1998, 100: 23-26.

[24]

Piscanec S, Ciacchi L C, Vesselli E, et al. Bioactivity of TiN-coated Titanium Implants[J]. Acta. Mater., 2004, 52: 1237-1245.

[25]

Lakshmi S G, Arivuoli D, Ganguli B. Surface Modification and Characterisation of Ti-Al-V Alloys[J]. Mater. Chem. Phys., 2002, 76: 187-190.

[26]

Bell T, Bergmann H W, Lanagan J, et al. Surface Engineering of Titanium with Nitrogen[J]. Surf. Eng., 1986, 2: 133-143.

[27]

Xu Z, Liu X P, Zhang P Z. Double Glow Plasma Surface Alloying and Plasma Nitriding[J]. Surf. Coat. Technol., 2007, 201: 4822-4825.

[28]

Majumdar P, Singh S B, Chakraborty M. Wear Response of Heattreated Ti-13Zr-13Nb Alloy in Dry Condition and Simulated Body Fluid[J]. Wear, 2008, 264: 1015-1025.

[29]

Xu Z. Method and Apparatus for Introducing Normally Solid Materials into Substrate Surface, 1985

[30]

Kolachev B A, Egorova B Y, Belova S B. Relation between the Temperature of the a+ß-ß Transformation of Commercial Titanium Alloys and Their Chemical Composition[J]. Met. Sci. Heat Treat., 2008, 50: 367-373.

[31]

Nagasaki S, Hirabayashi M. Binary Alloy Phase Diagrams[M], 2004

[32]

Yildiz F, Yetim A F, Alsaran A, et al. Wear and Corrosion Behavior of Various Surface Treated Medical Grade Titanium Alloy in Biosimulated Environment[J]. Wear, 2009, 267: 695-701.

[33]

Borgioli F, Galvanetto E, Fossati A, et al. Glow-discharge and Furnace Treatments of Ti-6Al-4V[J]. Surf. Coat. Technol., 2004, 184: 255-262.

[34]

Bhushan B. Introduction to Tribology[M], 2007

[35]

Li X Y, Tang B, Wang H F, et al. Zr-N Surface Alloying Layers Fabricated in Pure Titanium Substrates by Plasma Surface Alloying[J] Trans. Nonferrous Met. Soc., 2013, 23: 1628–1632

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/