Corrosion mechanism and corrosion model of Mg-Y alloy in NaCl solution

Hong Xu , Zhiquan Wu , Xiaoru Wang , Xin Zhang , Jiping Ren , Yang Shi , Zepu Wang , Liwei Wang , Changhua Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 1048 -1062.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 1048 -1062. DOI: 10.1007/s11595-016-1489-2
Metallic Materials

Corrosion mechanism and corrosion model of Mg-Y alloy in NaCl solution

Author information +
History +
PDF

Abstract

Corrosion of Mg–Y alloy was studied using electrochemical evaluations, immersion tests and SEM observations. Corrosion mechanisms of Mg-(0.25 and 2.5) Y alloy and Mg-(5, 8, and 15) Y alloy were uniform corrosion and pitting corrosion respectively, and the content of Mg24Y5 phases determined its effect acting as cathode to accelerate the corrosion or corrosion barrier to inhibit the corrosion. Corrosion resistance of Mg-(0.25, 2.5, 5, 8, and 15) Y alloys was as follows: Rt(Mg-0.25Y) < Rt(Mg-8Y) < Rt(Mg-15Y) < Rt(Mg-5Y) < Rt(Mg-2.5Y). Y could significantly improve the corrosion resistance of the Mg-Y alloy, but the excess of Y deteriorated the corrosion resistance of the Mg-Y alloy. The optimum content of Y in the studied alloys was 2.5%.

Keywords

Mg-Y / corrosion / electrochemical / weight loss rate

Cite this article

Download citation ▾
Hong Xu, Zhiquan Wu, Xiaoru Wang, Xin Zhang, Jiping Ren, Yang Shi, Zepu Wang, Liwei Wang, Changhua Liu. Corrosion mechanism and corrosion model of Mg-Y alloy in NaCl solution. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(5): 1048-1062 DOI:10.1007/s11595-016-1489-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song G. Recent Progress in Corrosion and Protection of Magnesium Alloys[J]. Advanced Engineering Materials, 2005, 7: 563-586.

[2]

Majumdar JD, Galun R, Mordike B, et al. Effect of Laser Surface Melting on Corrosion and Water Resistance of a Commercial Magnesium Alloy[J]. Materials Science and Engineering A, 2003, 361: 119-129.

[3]

Song G, Atrens A. Understanding Magnesium Corrosion-a Framework for Improved Alloy Performance[J]. Advanced Engineering Materials, 2003, 5: 837-858.

[4]

Shaw BA. Corrosion Resistance of Magnesium Alloys. in: LJ Korb (Eds.) 7. Vol. 13A: Corrosion, ninth ed.[M]. Metals Park: ASM International Handbook Committee, 2003

[5]

Zhang X, Zhang K, Li X, et al. Corrosion and Electrochemical Behavior of As-cast Mg-5Y-7Gd-1Nd-0.5Zr Magnesium Alloys in 5% NaCl Aqueous Solution[J]. Progress in Natural Science: Materials International, 2011, 21: 314-321.

[6]

Socjusz-Podosek M, Litynska L. Effect of Yttrium on Structure and Mechanical Properties of Mg Alloys[J]. Materials Chemistry and Physics, 2003, 80: 472-475.

[7]

Zhang MX, Kelly PM. Morphology and Crystallography of Mg24Y5 Precipitate in Mg-Y Alloy[J]. Scripta Materialia, 2003, 48: 379-384.

[8]

Liu M, Schmutz P, Uggowitzer PJ, et al. The Influence of Yttrium (Y) on the Corrosion of Mg–Y Binary Alloys[J]. Corrosion Science, 2010, 52: 3687-3701.

[9]

Miller PL, Shaw BA, Wendt RG, et al. Assessing the Corrosion Resistance of Nonequilibrium Magnesium–Yttrium Alloys[J]. Corrosion, 1995, 52: 922-931.

[10]

Davenport AJ, Padovani C, Connolly BJ, et al. Synchrotron X-ray Microtomography Study of the Role of Y in Corrosion of Magnesium Alloy WE43[J]. Electrochemical and Solid-State Letters, 2007, 10: C5-C8.

[11]

Zhao M-C, Liu M, Song G, et al. Influence of the ß-phase Morphology on the Corrosion of the Mg Alloy AZ91[J]. Corrosion Science, 2008, 50: 1939-1953.

[12]

Wang Q, Liu Y, Fang S, et al. Evaluating the Improvement of Corrosion Residual Strength by Adding 1.0 wt% Yttrium into an AZ91D Magnesium Alloy[J]. Materials Characterization, 2010, 61: 674-682.

[13]

Guo XW, Chang JW, He SM, et al. Investigation of Corrosion Behaviors of Mg–6Gd–3Y–0.4Zr Alloy in NaCl Aqueous Solutions[J]. Electrochimica Acta, 2007, 52: 2570-2579.

[14]

Pinto R, Carmezim MJ, Ferreira MGS, et al. A Two-step Surface Treatment, Combining Anodisation and Silanisation, for Improved Corrosion Protection of the Mg Alloy WE54[J]. Progress in Organic Coatings, 2010, 69: 143-149.

[15]

Zhang X, Zhang K, Deng X, et al. Corrosion Behavior of Mg–Y Alloy in NaCl Aqueous Solution[J]. Progress in Natural Science: Materials International, 2012, 22: 169-174.

[16]

Qiu D, Zhang MX, Kelly PM. Crystallography of Heterogeneous Nucleation of Mg Grains on Al2Y Nucleation Particles in an Mg-10 wt% Y Alloy[J]. Scripta. Materials, 2009, 61: 12-315.

[17]

Liu ZY, Li XG, Cheng YF. Electrochemical State Conversion Model for Occurrence of Pitting Corrosion on a Cathodically Polarized Carbon Steel in a Near-neutral pH Solution[J]. Electrochimica Acta, 2011, 56: 4167-4175.

[18]

Zhang JQ, Cao CN. Introduction of Electrochemical Impedance Spectroscopy[M], 2002 Beijing: Science Press.

[19]

Ambat R, Aung NN, Zhou W. Evaluation of Microstructural Effects on Corrosion Behavior of AZ91D Magnesium Alloy[J]. Corrosion Science, 2000, 42(8): 143-145.

[20]

Makar GL, Kruger J. Corrosion of Magnesium[J]. International Materials Review, 1993, 38(3): 138-153.

[21]

Morlidge J R, Skeldon P, Thompson G E, et al. Gel Formation and the Efficiency of Anodic Film Growth on Aluminium[J]. Electrochimica Acta, 1999, 44(14): 2423-2435.

[22]

Gabovich A M, Voitenko A I. Surface Tension at the Electrolyte Solution-Metal Electrode Interface-III. Polyvalent and Nonsymmetrical Electrolytes[J]. Electrochimica Acta, 1990, 35(2): 545-554.

[23]

Lafront AM, Zhang W, Jin S, et al. Pitting Corrosion of AZ91D and AJ62x Magnesium Alloys in Alkaline Chloride Medium Using Electrochemical Techniques[J]. Electrochimica Acta, 2005, 51(3): 489-501.

[24]

Du W, Sun Y, Min X, et al. Microstructure and Mechanical Properties of Mg-Al Based Alloy with Calcium and Rare Earth Additions[J]. Materials Science and Engineering A, 2003, 356(1-2): 1-7.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/