Synthesis and properties of Li2MnSiO4/C cathode materials for Li-ion batteries

Yanchao Wang , Shixi Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 945 -949.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 945 -949. DOI: 10.1007/s11595-016-1472-y
Advanced Materials

Synthesis and properties of Li2MnSiO4/C cathode materials for Li-ion batteries

Author information +
History +
PDF

Abstract

Carbon was coated on the surface of Li2MnSiO4 to improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 °C and the solid-state method followed by heat treatment at 950 °C. It is shown that the cycling performance is greatly enhanced by carbon coating, compared with the pristine Li2MnSiO4 cathode obtained by the solution method. The initial discharge capacity of Li2MnSiO4/C nanocomposite is 280.9 mAh/g at 0.05 C with the carbon content of 33.3 wt%. The reasons for the improved electrochemical performance are smaller grain size and higher electronic conductivity due to the carbon coating. The Li2MnSiO4/C cathode material obtained by the solid-state method exhibits poor cycling performance, the initial discharge capacity is less than 25 mAh/g.

Keywords

Li-ion batteries / cathode / Li2MnSiO4 / carbon coating

Cite this article

Download citation ▾
Yanchao Wang, Shixi Zhao. Synthesis and properties of Li2MnSiO4/C cathode materials for Li-ion batteries. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(5): 945-949 DOI:10.1007/s11595-016-1472-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y X, Gong Z L, Yang Y. Synthesis and Characterization of Li2MnSiO4/C Nanocomposite Cathode Material for Lithium Ion Batteries[J]. J. Power Sources, 2007, 174: 528-532.

[2]

Nytén A, Kamali S H m L, et al. The Lithium Extraction/Insertion Mechanism in Li2FeSiO4[J]. J. Mater. Chem., 2006, 16(23): 2266-2272.

[3]

Dominko R, Bele M, Gaberšcek M, et al. Structure and Electrochemical Performance of Li2MnSiO4 and Li2FeSiO4 as Potential Li-Battery Cathode Materials[J]. Electrochem. Commun., 2006, 8(2): 217-222.

[4]

Nytén A, Abouimrane A, Armand M, et al. Electrochemical Performance of Li2FeSiO4 as a New Li-Battery Cathode Material[J]. Electrochem. Commun., 2005, 7(2): 156-160.

[5]

Dominko R, Bele M, Kokalj A, et al. Li2MnSiO4 as a Potential Li-Battery Cathode Material[J]. J. Power Sources, 2007, 174(2): 457-461.

[6]

Deng C, Zhang S, Fu B L, et al. Characterization of Li2MnSiO4 and Li2FeSiO4 Cathode Materials Synthesized via a Citric Acid Assisted Sol-Gel Method[J]. Mater. Chem. Phys., 2010, 120: 14-17.

[7]

Islam M S, Dominko R, Masquelier C, et al. Silicate Cathodes for Lithium Batteries: Alternatives to Phosphates?[J]. J. Mater. Chem., 2011, 21: 9811-9818.

[8]

Belharouak I, Abouimrane A, Amine K. Structural and Electrochemical Characterization of Li2MnSiO4 Cathode Material[J]. J. Phy. Chem. C., 2009, 113: 20733-20737.

[9]

Dominko R. Li2MSiO4 (M=Fe and/or Mn) Cathode Materials[J]. J. Power Sources, 2008, 184(2): 462-468.

[10]

Rangappa D, Murukanahally K D, Tomai T, et al. Ultrathin Nanosheets of Li2MSiO4 (M = Fe, Mn) as High-Capacity Li-Ion Battery Electrode[J]. Nano Letters, 2012, 12(3): 1146-1151.

[11]

Kempaiah D M, Rangappa D, Honma I. Controlled Synthesis of Nanocrystalline Li2MnSiO4 Particles for High Capacity Cathode Application in Lithium-Ion Batteries[J]. Chem. Commun., 2012, 48(21): 2698-2700.

[12]

Liu S K, Xu J, Li D Z, et al. High Capacity Li2MnSiO4/C Nanocomposite Prepared by Sol–Gel Method for Lithium-Ion Batteries[J]. J. Power Sources, 2013, 232: 258-263.

[13]

Liu J, Xu H Y, Jiang X L, et al. Facile Solid-State Synthesis of Li2MnSiO4/C Nanocomposite as a Superior Cathode with a Long Cycle Life[J]. J. Power Sources, 2013, 231: 39-43.

[14]

Moriya M, Miyahara M, Hokazono M, et al. Synthesis of Hybrid Li2MnSiO4 Nanoparticles with Carbon for Cathode Materials with Stable Charge/Discharge Cycles[J]. J. Electrochem. Soc., 2014, 161(1): A97-A101.

[15]

Sun D, Wang H, Ding P, et al. In-Situ Synthesis of Carbon Coated Li2MnSiO4 Nanoparticles with High Rate Performance[J]. J. Power Sources, 2013, 242: 865-871.

[16]

Bhaskar A, Deepa M, Rao T N, et al. In Situ Carbon Coated Li2MnSiO4/ C Composites as Cathodes for Enhanced Performance Li-Ion Batteries[J]. J. Electrochem. Soc., 2012, 159(12): A1954-A1960.

[17]

Swietoslawski M, Molenda M, Zaitz M M, et al. C/Li2MnSiO4 as a Composite Cathode Material for Li-Ion Batteries[J]. ECS Transactions, 2012, 41(41): 129-137.

[18]

Zhao Y, Wu C, Li J, et al. Long Cycling Life of Li2MnSiO4 Lithium Battery Cathodes under the Double Protection from Carbon Coating and Graphene Network[J]. J. Mater. Chem. A, 2013, 1(12): 3856-3859.

[19]

Zhang S, Li Y, Xu G, et al. High-Capacity Li2Mn0.8Fe0.2SiO4/Carbon Composite Nanofiber Cathodes for Lithium-Ion Batteries[J]. J. Power Sources, 2012, 213: 10-15.

[20]

Swietoslawski M, Molenda M, Furczon K, et al. Nanocomposite C/Li2MnSiO4 Cathode Material for Lithium Ion Batteries[J]. J. Power Sources, 2013, 244: 510-514.

[21]

Gummow R J, Sharma N, Peterson V K, et al. Synthesis, Structure, and Electrochemical Performance of Magnesium-Substituted Lithium Manganese Orthosilicate Cathode Materials for Lithium-Ion Batteries[J]. J. Power Sources, 2012, 197: 231-237.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/