Analysis of microstructure and mechanical properties of ultrafine grained low carbon steel

Heping Liu , Feng’er Sun , Hu’er Sun , Bin Liu , Yi Wang , Xuejun Jin

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 1099 -1104.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 1099 -1104. DOI: 10.1007/s11595-016-1496-3
Metallic Materials

Analysis of microstructure and mechanical properties of ultrafine grained low carbon steel

Author information +
History +
PDF

Abstract

A novel design scheme of hot stamping, quenching and partitioning process was conducted in a quenchable boron steel to obtain the nanometric duplex microstructure comprising ultrafine retained austenite and martensite. It is shown that the materials possess excellent mechanical properties and the ductility can be further improved without compromising the strength. The newly treated steel shows excellent mechanical properties and the total elongation of the steel increases from 6.6% to 14.8% compared with that of hot stamped and quenched steel. Therefore, this kind of steel has become another group of advanced high-strength steels. The microstructure which is mainly responsible for such excellent mechanical properties was investigated.

Keywords

hot stamping / quenching and partitioning (Q&P) / retained austenite / martensite / grain refinement

Cite this article

Download citation ▾
Heping Liu, Feng’er Sun, Hu’er Sun, Bin Liu, Yi Wang, Xuejun Jin. Analysis of microstructure and mechanical properties of ultrafine grained low carbon steel. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(5): 1099-1104 DOI:10.1007/s11595-016-1496-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Speer J G, De Moor E, Findley K O, et al. Analysis of Microstructure Evolution in Quenching and Partitioning Automotive Sheet Steel[J]. Metall. Mater. Trans. A, 2011, 42(12): 3591-3601.

[2]

Bhadeshia H. Computational Design of Advanced Steels[J]. Scripta Mater., 2014, 70: 12-17.

[3]

Naderi M, Abbasi M, Saeed-Akbari A. Enhanced Mechanical Properties of a Hot-stamped Advanced High-Strength Steel via Tempering Treatment[J]. Metall. Mater. Trans. A, 2013, 44(4): 1852-1861.

[4]

Liu H, Lu X, Jin X, et al. Enhanced Mechanical Properties of a Hot Stamped Advanced High-Strength Steel Treated by Quenching and Partitioning Process[J]. Scripta Mater., 2011, 64(8): 749-752.

[5]

Nikravesh M, Naderi M, Akbari G H. Influence of Hot Plastic Deformation and Cooling Rate on Martensite and Bainite Start Temperatures in 22MnB5 Steel[J]. Mater. Sci. Eng., A, 2012, 540: 24-29.

[6]

Kolleck R, Steinhoefer D, Feindt J A, et al. Manufacturing Method for Safety and Structural Body Parts for Lightweight Body Design, 2004

[7]

Liu H S, Xing Z W, Bao J, et al. Investigation of the Hot-Stamping Process for Advanced High-Strength Steel Sheet by Numerical Simulation[J]. J. Mater. Eng. Perform., 2010, 19(3): 325-334.

[8]

Kolleck R, Veit R, Merklein M, et al. Investigation on Induction Heating for Hot Stamping of Boron Alloyed Steels[J]. CIRP Annals-Manuf. Technol., 2009, 58(1): 275-278.

[9]

Merklein M, Lechler J, Geiger M. Characterisation of the Flow Properties of the Quenchenable Ultra High Strength Steel 22MnB5[J]. CIRP Annals-Manuf. Technol., 2006, 55(1): 229-232.

[10]

Heping L, Liu B, Li D, et al. Hot Deformation Behavior of Low Carbon Steel during Compression at Elevated Temperature[J]. J.Wuhan Univ.Technol.-Mater. Sci. Ed., 2014, 29(3): 601-605.

[11]

Hoffmann H, So H, Steinbeiss H. Design of Hot Stamping Tools with Cooling System[J]. CIRP Annals-Manuf. Technol., 2007, 56(1): 269-272.

[12]

Bardelcik A, Salisbury C P, Winkler S, et al. Effect of Cooling Rate on the High Strain Rate Properties of Boron Steel[J]. Int. J. Impact Eng., 2010, 37(6): 694-702.

[13]

Lin N, Guo J, Xie F, et al. Comparison of Surface Fractal Dimensions of Chromizing Coating and P110 Steel for Corrosion Resistance Estimation[J]. Appl. Surf. Sci., 2014, 311(9): 330-338.

[14]

Lin N, Huang X, Zou J, et al. Effects of Plasma Nitriding and Multiple Arc Ion Plating TiN Coating on Bacterial Adhesion of Commercial Pure Titanium via in Vitro Investigations[J]. Surf. Coa. Technol., 2012, 209(38): 212-215.

[15]

Speer J, Matlock D K, De Cooman B C, et al. Carbon Partitioning into Austenite after Martensite Transformation[J]. Acta Mater., 2003, 51(9): 2611-2622.

[16]

De Moor E, Speer J G, Matlock D K, et al. Quenching and Partitioning of CMnSi Steels Containing Elevated Manganese Levels[J]. Steel Res. Int., 2012, 83(4): 322-327.

[17]

Speer J G, Edmonds D V, Rizzo F C, et al. Partitioning of Carbon from Supersaturated Plates of Ferrite, with Application to Steel Processing and Fundamentals of the Bainite Transformation[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8(3): 219-237.

[18]

Clarke A J, Speer J G, Matlock D K, et al. Influence of Carbon Partitioning Kinetics on Final Austenite Fraction during Quenching and Partitioning[J]. Scripta Mater., 2009, 61(2): 149-152.

[19]

Edmonds D V, Speer J G. Martensitic Steels with Carbide Free Microstructures Containing Retained Austenite[J]. Mater. Sci. Technol., 2010, 26(4): 386-391.

[20]

Edmonds D V, He K, Rizzo F C, et al. Quenching and Partitioning Martensite-A Novel Steel Heat Treatment[J]. Mater. Sci. Eng., A, 2006, 438: 25-34.

[21]

Liu H, Sun H, Liu B, et al. An Ultrahigh Strength Steel with Ultrafinegrained Microstructure Produced through Intercritical Deformation and Partitioning Process[J]. Mater. Des., 2015, 83: 760-767.

[22]

Santofimia M J, Speer J G, Clarke A J, et al. Influence of Interface Mobility on the Evolution of Austenite-Martensite Grain Assemblies during Annealing[J]. Acta Mater., 2009, 57(15): 4548-4557.

[23]

Liu H, Jin X, Dong H, et al. Martensitic Microstructural Transformations from the Hot Stamping, Quenching and Partitioning Process[J]. Mater. Charact., 2011, 62(2): 223-227.

[24]

Martis C J, Putatunda S K, Boileau J, et al. The Static and Dynamic Mechanical Properties of a New Low-Carbon, Low-Alloy Austempered Steel[J]. Mater. Sci. Eng., A, 2014, 589: 280-287.

[25]

Naderi M. Hot Stamping of Ultra High Strength Steels[D]. Germany: RWTH Aachen University, 2007

[26]

Clarke A J, Speer J G, Miller M K, et al. Carbon Partitioning to Austenite from Martensite or Bainite during the Quench and Partition (Q&P) Process: A Critical Assessment[J]. Acta Mater., 2008, 56(1): 16-22.

[27]

Caballero F G, Miller M K, Clarke A J, et al. Examination of Carbon Partitioning into Austenite during Tempering of Bainite[J]. Scripta Mater., 2010, 63(4): 442-445.

[28]

Shipway P H, Bhadeshia H. Mechanical Stabilisation of Bainite[J]. Mater. Sci. Technol., 1995, 11(11): 1116-1128.

[29]

Mukherjee K, Hazra S S, Militzer M. Grain Refinement in Dual-Phase Steels[J]. Metall. Mater. Trans. A, 2009, 40(9): 2145-2159.

[30]

Torralba J M, Navarro A, Campos M. From the TRIP Effect and Quenching and Partitioning Steels Concepts to the Development of New High-Performance, Lean Powder Metallurgy Steels[J]. Mater. Sci. Eng., A, 2013, 573: 253-256.

[31]

Bouquerel J, Verbeken K, De Cooman B C. Microstructure-Based Model for the Static Mechanical Behaviour of Multiphase Steels[J]. Acta Mater., 2006, 54(6): 1443-1456.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/