Molecular dynamics simulation on pressure and thickness dependent density of squalane film

Ling Pan , Chenghui Gao

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 955 -960.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 955 -960. DOI: 10.1007/s11595-016-1474-9
Advanced Materials

Molecular dynamics simulation on pressure and thickness dependent density of squalane film

Author information +
History +
PDF

Abstract

Molecular dynamics (MD) simulations using the polymer consistent force field (PCFF) were adopted to investigate the pressure and thickness dependent density of squalane film in a nanogap at 373 K, with three different initial film thicknesses, and for a wide range of pressures. The equivalent densities predicted by MD simulations were compared with the empirical data. Results show that the squalane atoms tend to form layers parallel to the confining substrates but the orientations of squalane molecules are irregular throughout the film. In addition, distinct excluded volumes are not found at the interfaces of the film and substrates. Furthermore, with the same initial film thickness h 0, the film thickness h and compressibility decrease with increasing pressure, but the compressibility is similar for films with different initial film thicknesses. The equivalent densities predicted by MD simulations with the maximum initial film thickness (9.44 nm) are accurate to the values of Tait equation. The MD simulation with adequate initial film thickness can accurately and conveniently predict the bulk densities of lubricants.

Keywords

thin film lubrication / density / squalane / molecular dynamics simulation

Cite this article

Download citation ▾
Ling Pan, Chenghui Gao. Molecular dynamics simulation on pressure and thickness dependent density of squalane film. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(5): 955-960 DOI:10.1007/s11595-016-1474-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu Y Z, Granick S. Microscopic Study of Thin Film Lubrication and Its Contributions to Macroscopic Tribology[J]. Tribol. Lett., 1998, 5(1): 81-88.

[2]

Travis K P, Todd B D, Evans D J. Departure from Navier-Stokes Hydrodynamics in Confined Liquids[J]. Phys. Rev. E, 1997, 55(4): 4288-4295.

[3]

Bair S. High Pressure Rheoiogy for Quantitative Elastohydrodynamics[M], 2007 54-71.

[4]

Granick S. Motions and Relaxations of Confined Liquids[J]. Science, 1991, 253(5026): 1374-1379.

[5]

Zhang C. Research on Thin Film Lubrication: State of the Art[J]. Tribol. Int., 2005, 38(4): 443-448.

[6]

Sagdeev D I, Fomina M G, Mukhamedzyanov G K, et al. Experimental Study of The Density and Viscosity of n-Heptane at Temperatures from 298 K to 470 K and Pressure upto 245 MPa[J]. Int. J. Thermophysics, 2013, 34(1): 1-33.

[7]

Sun J, Wang W, Wang H S. Dependence of Nanoconfined Liquid Behavior on Boundary and Bulk Factors[J]. Phys. Rev. E, 2013, 87(2): 023-020.

[8]

Asproulis N, Drikakis D. Wall-mass Effects on Hydrodynamic Boundary Slip[J]. Phys. Rev. E, 2011, 84(3): 031-504.

[9]

Dai L, Satyanarayana N, Sinha S, et al. Analysis of PFPE Lubricating Film in NEMS Application via Molecular Dynamics Simulation[J]. Trib. Int., 2013, 60: 53-57.

[10]

Eder S J, Vernes A, Betz G. On the Derjaguin Offset in Boundarylubricated Nanotribological Systems[J]. Langmuir, 2013, 29(45): 13760-13772.

[11]

Ding J N, Jiang N N, Kan B, et al. Molecular Dynamics Study of Interactions Between Noncontact Copper and Silicon Nano-films with Lateral Movement[J]. Comp. Mater. Sci., 2012, 61(0): 50-53.

[12]

Cibulka I, Hnedkovský L. Liquid Densities at Elevated Pressures of n-Alkanes from C5 to C16: A Critical Evaluation of Experimental Data[J]. J. Chem. Eng. Data, 1996, 41(4): 657-668.

[13]

Pecar D, Dolecek V. Isothermal Compressibilities and Isobaric Expansibilities of Pentane, Hexane, Heptane and Their Binary and Ternary Mixtures from Density Measurements[J]. Fluid Phase Equilib., 2003, 211(1): 109-127.

[14]

Fandiño O, Pensado A S, Lugo L, et al. Volumetric Behaviour of the Environmentally Compatible Lubricants Pentaerythritol Tetraheptanoate and Pentaerythritol Tetranonanoate at High Pressures[J]. Green Chem., 2005, 7(11): 775-783.

[15]

Lan H, Liu C. The Hardness of Amorphous Si-DLC Films by Molecular Dynamics Simulations[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28(3): 444-448.

[16]

Liu Y, Dai Y, Wang J, et al. Hydrogen Diffusion in Aluminum Melts: An Ab Initio Molecular Dynamics Study[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2012, 27(3): 560-567.

[17]

Lan H Q, Takahisa K. Simulations on Various Lubrication Boundaries between Diamond-like Carbon Films[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(4): 658-660.

[18]

Li J, Zhao X, Wang S, et al. Multiscale Simulation of The Dislocation Emissions of Single Ni Crystal in Nanoindentation[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2010, 25(3): 423-428.

[19]

Lim R, O’Shea S J. Solvation Forces in Branched Molecular Liquids[J]. Phys. Rev. Lett., 2002, 88(24): 246101

[20]

Doig M, Warrens C P, Camp P J. Structure and Friction of Stearic Acid and Oleic Acid Films Adsorbed on Iron Oxide Surfaces in Squalane[J]. Langmuir, 2013, 30(1): 186-195.

[21]

Tsige M, Patnaik S S. An All-atom Simulation Study of the Ordering of Liquid Squalane near a Solid Surface[J]. Chem. Phys. Lett., 2008, 457(4-6): 357-361.

[22]

Fandiño O, Pensado A S, Lugo L, et al. Compressed Liquid Densities of Squalane and Pentaerythritol Tetra(2-ethylhexanoate)[J]. J. Chem. Eng. Data, 2005, 50(3): 939-946.

[23]

Plimpton S. Fast parallel Algorithms for Short-range Molecular Dynamics[J]. J. Comput. Phys., 1995, 117(1): 1-19.

[24]

LAMMPS Molecular Dynamics Simulator[OL]. http://lammps.sandia. gov, 2016

[25]

Sun H. Ab Initio Calculations and Force Field Development for Computer Simulation of Polysilanes[J]. Macromolecules, 1995, 28(3): 701-712.

[26]

Sun H. COMPASS: An Ab Initio Force-field Optimized for Condensedphase Applications Overview with Details on Alkane and Benzene Compounds [J]. J. Phys. Chem. B, 1998, 102(38): 7338-7364.

[27]

Karniadakis G, Beskok A, Aluru N. Microflows and Nanoflows: Fundamentals and Simulation[M], 2004 New York: Springer.

[28]

Pertsin A J, Grunze M. Long-ranged Solvation Forces in a Fluid with Short-ranged Interactions[J]. J. Chem. Phys., 2003, 118(17): 8004-8009.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/