Curing kinetics, mechanical properties and thermal stability of epoxy/graphene nanoplatelets (GNPs) powder coatings

Maoyong Zhi , Wanxia Huang

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 1155 -1161.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (5) : 1155 -1161. DOI: 10.1007/s11595-016-1505-6
Organic Materials

Curing kinetics, mechanical properties and thermal stability of epoxy/graphene nanoplatelets (GNPs) powder coatings

Author information +
History +
PDF

Abstract

Epoxy/graphene nanoplatelets (GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy (FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy (FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis (TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading (1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability.

Keywords

epoxy powder coating / graphene nanoplatelets (GNPs) / toughening mechanism / thermal stability

Cite this article

Download citation ▾
Maoyong Zhi, Wanxia Huang. Curing kinetics, mechanical properties and thermal stability of epoxy/graphene nanoplatelets (GNPs) powder coatings. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(5): 1155-1161 DOI:10.1007/s11595-016-1505-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mafi R, Mirabedini S M, Attar M M, et al. Cure Characterization of Epoxy and Polyester Clear Powder Coatings using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Thermal Analysis (DMTA)[J]. Prog. Org. Coat., 2005, 54(3): 164-169.

[2]

Misev T A v d, Linde R. Powder Coatings Technology: New Developments at the Turn of the Century[J]. Prog. Org. Coat., 1998, 34(1-4): 160-168.

[3]

Lee S S, Han H Z Y, Hilborn J G, et al. Surface Structure Build-up in Thermosetting Powder Coatings during Curing[J]. Prog. Org. Coat., 1999, 36(1-2): 79-88.

[4]

Wicks Z W, Jones F N, Pappas S P, et al. Organic Coatings, Science and Technology, 3rd ed[M], 2007 New York: Wiley.

[5]

Montserrat S, Calventus Y, Hutchinson J M. Physical Aging of Thermosetting Powder Coatings[J]. Prog. Org. Coat., 2006, 55(1): 35-42.

[6]

Barletta M, Lusvarghi L, Mantini F P, et al. Epoxy-based Thermosetting Powder Coatings: Surface Appearance, Scratch Adhesion and Wear Resistance[J]. Surf. Coat. Tech., 2007, 201(16-17): 7479-7504.

[7]

Schab-Balcerzak E, Janeczek H, Kaczmarczyk B, et al. Epoxy Resin Cured with Diamine Bearing Azobenzene Group[J]. Polymer, 2004, 45(8): 2483-2493.

[8]

Gojny F H, Wichmann M H G K U, et al. Carbon Nanotubereinforced Epoxy-composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content[J]. Compos. Sci. Technol., 2004, 64(15): 2363-2371.

[9]

Liu J C, Jia X L, Zhang S W, et al. Preparation and Characterization of Carboxyl-terminated Poly(butadiene-co-acrylonitrile)-epoxy Resin Prepolymers for Fusion-bonded-epoxy Powder Coating[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2012, 27(4): 694-701.

[10]

Lipic P M, Bates F S, Hillmyer M A. Nano-structured Thermosets from Self-assembled Amphiphilic Block Copolymer/epoxy Resin Mixtures [J]. J. Am. Chem. Soc., 1998, 120(35): 8963-8970.

[11]

Ramos V D, da Costa H M, Soares V L P, et al. Modification of Epoxy Resin: a Comparison of Different Types of Elastomer[J]. Polym. Test., 2005, 24(3): 387-394.

[12]

Okamatsu T, Ochi M. Effect on the Toughness and Adhesion Properties of Epoxy Resin Modified with Silyl-crosslinked Urethane Microsphere [J]. Polymer, 2002, 43(3): 721-730.

[13]

Yu H J, Wang L, Shi Q, et al. Study on Nano-CaCO3 Modified Epoxy Powder Coatings[J]. Prog. Org. Coat., 2006, 55(3): 296-300.

[14]

Tripathi G, Srivastava D. Effect of Carboxyl-terminated Poly(butadieneco-acrylonitrile) (CTBN) Concentration on Thermal and Mechanical Properties of Binary Blends of Diglycidyl Ether of Bisphenol-A (DGEBA) Epoxy Resin[J]. Mater. Sci. Eng., A, 2007, 443(1-2): 262-269.

[15]

Akbari R, Beheshty M H, Shervin M. Toughening of Dicyandiamidecured DGEBA-based Epoxy Resins by CTBN Liquid Rubber[J]. Iran. Polym. J., 2013, 22(5): 313-324.

[16]

Chu K, Li W S, Dong H F. Role of Graphene Waviness on the Thermal Conductivity of Graphene Composites[J]. Appl. Phys. A, 2013, 111(1): 221-225.

[17]

Yan M Y, Wang F C, Han C H, et al. Nanowire Templated Semihollow Bicontinuous Graphene Scrolls: Designed Construction, Mechanism and Enhanced Energy Storage Performances[J]. J. Am. Chem. Soc., 2013, 135(48): 18176-18182.

[18]

Yang Z, Gao R, Hu N, et al. The Prospective Two-dimensional Graphene Nanosheets: Preparation, Functionalization and Applications[J]. Nano-Micro Lett., 2012, 4(1): 1-9.

[19]

Guo S J, Dong S J. Graphene Nanosheet: Synthesis, Molecular Engineering, Thin Film, Hybrids, and Energy and Analytical Applications[J]. Chem. Soc. Rev., 2011, 40(5): 2644-2672.

[20]

Potts J R, Dreyer D R, Bielawski C W, et al. Graphene-based Polymer Nanocomposites[J]. Polymer, 2011, 52(1): 5-25.

[21]

Mirabedini S M, Kiamanesh A. The Effect of Micro and Nano-sized Particles on Mechanical and Adhesion Properties of a Clear Polyester Powder Coatings[J]. Prog. Org. Coat., 2013, 76(11): 1625-1632.

[22]

Karayannidou E G, Achilias D S, Sideridou I D. Cure Kinetics of Epoxy-amine Resins Used in the Restoration of Works of Art from Glass and Ceramic[J]. Eur. Polym. J., 2006, 42(12): 3311-3323.

[23]

Yu J Y, Cong P L, Wu S P, et al. Curing Behavior of Epoxy Asphalt [J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2009, 24(3): 462-465.

[24]

Lim S H, Zeng K Y, He C B. Morphology, Tensile and Fracture Characteristics of Epoxy-alumina Nanocomposites[J]. Mater. Sci. Eng., A, 2010, 527(21-22): 5670-5676.

[25]

Sánchez-Soto M, Pagés P, Lacorte T, et al. Curing FTIR Study and Mechanical Characterization of Glass Bead Filled Trifunctional Epoxy Composites[J]. Compos. Sci. Technol., 2007, 67(9): 1974-1985.

[26]

Van der Wel G K, Adan O C G. Moisture in Organic Coatings-a Review [J]. Prog. Org. Coat., 1999, 37(1-2): 1-14.

[27]

Chan C M, Wu J S, Li J X, et al. Polypropylene/calcium Carbonate Nanocomposites[J]. Polymer, 2002, 43(10): 2981-2992.

[28]

Boo W J, Sun L Y, Liu J, et al. Effect of Nanoplatelet Dispersion on Mechanical Behavior of Polymer Nanocomposites[J]. J. Polym. Sci., Part B: Polym. Phys., 2007, 45(12): 1459-1469.

[29]

Levita G, Petris S D, Marchetti A, et al. Crosslink Density and Fracture Toughness of Epoxy Resins[J]. J. Mater. Sci., 1991, 26(9): 2348-2352.

[30]

Piazza D, Lorandi N P, Pasqual C I, et al. Influence of a Microcomposite and a Nanocomposite on the Properties of an Epoxy-based Powder Coating[J]. Mater. Sci. Eng., A, 2011, 528(22-23): 6769-6775.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/