Journal home Browse Most accessed

Most accessed

  • Select all
  • RESEARCH ARTICLE
    Ze MO, Jiangrui QIU, Hanbin XU, Lanlan XU, Yuqing HU
    Frontiers of Structural and Civil Engineering, 2023, 17(5): 704-721. https://doi.org/10.1007/s11709-023-0941-6

    In this study, the flexural and longitudinal shear performances of two types of precast lightweight steel–ultra-high performance concrete (UHPC) composite beams are investigated, where a cluster UHPC slab (CUS) and a normal UHPC slab (NUS) are connected to a steel beam using headed studs through discontinuous shear pockets and full-length shear pockets, respectively. Results show that the longitudinal shear force of the CUS is greater than that of the NUS, whereas the interfacial slip of the former is smaller. Owing to its better integrity, the CUS exhibits greater flexural stiffness and a higher ultimate bearing capacity than the NUS. To further optimize the design parameters of the CUS, a parametric study is conducted to investigate their effects on the flexural and longitudinal shear performances. The square shear pocket is shown to be more applicable for the CUS, as the optimal spacing between two shear pockets is 650 mm. Moreover, a design method for transverse reinforcement is proposed; the transverse reinforcement is used to withstand the splitting force caused by studs in the shear pocket and prevent the UHPC slab from cracking. According to calculation results, the transverse reinforcement can be canceled when the compressive strength of UHPC is 150 MPa and the volume fraction of steel fiber exceeds 2.0%.

  • RESEARCH ARTICLE
    Pengfei LI, Ziqi JIA, Mingju ZHANG, Xiaojing GAO, Haifeng WANG, Wu FENG
    Frontiers of Structural and Civil Engineering, 2023, 17(7): 1033-1046. https://doi.org/10.1007/s11709-023-0973-y

    This study focuses on the bending failure performance of a shield tunnel segment. A full-scale test was conducted to investigate deformation and failure characteristics. During the loading, the bending failure process can be divided into four stages: the elastic stage, working stage with cracks, failure stage, and ultimate stage. The characteristic loads between contiguous stages are the cracking, failure, and ultimate loads. A numerical model corresponding to the test was established using the elastoplastic damage constitutive model of concrete. After a comparative analysis of the simulation and test results, parametric studies were performed to discuss the influence of the reinforcement ratio and proportion of tensile longitudinal reinforcement on the bearing capacity. The results indicated that the change in the reinforcement ratio and the proportion of tensile longitudinal reinforcement had little effect on the cracking load but significantly influenced the failure and ultimate loads of the segment. It is suggested that in the reinforcement design of the subway segment, the reinforcement ratio and the proportion of tensile longitudinal reinforcement can be chosen in the range of 0.7%–1.2% and 49%–55%, respectively, allowing the segment to effectively use the reinforcement and exert the design strength, thereby improving the bearing capacity of the segment.

  • RESEARCH ARTICLE
    Jarun SRECHAI, Wongsa WARARUKSAJJA, Sutat LEELATAVIWAT, Suchart LIMKATANYU
    Frontiers of Structural and Civil Engineering, 2023, 17(5): 686-703. https://doi.org/10.1007/s11709-023-0937-2

    The interactions between reinforced concrete (RC) frames and infill walls play an important role in the seismic response of frames, particularly for low-rise frames. Infill walls can increase the overall lateral strength and stiffness of the frame owing to their high strength and stiffness. However, local wall-frame interactions can also lead to increased shear demand in the columns owing to the compressive diagonal strut force from the infill wall, which can result in failure or in serious situations, collapse. In this study, the effectiveness of a design strategy to consider the complex infill wall interaction was investigated. The approach was used to design example RC frames with infill walls in locations with different seismicity levels in Thailand. The performance of these frames was assessed using nonlinear static, and dynamic analyses. The performance of the frames and the failure modes were compared with those of frames designed without considering the infill wall or the local interactions. It was found that even though the overall responses of the buildings designed with and without consideration of the local interaction of the infill walls were similar in terms the overall lateral strength, the failure modes were different. The proposed method can eliminate the column shear failure from the building. Finally, the merits and limitations of this approach are discussed and summarized.

  • RESEARCH ARTICLE
    Zhong ZHOU, Yidi ZHENG, Junjie ZHANG, Hao YANG
    Frontiers of Structural and Civil Engineering, 2023, 17(5): 732-744. https://doi.org/10.1007/s11709-023-0965-y

    An algorithm based on deep semantic segmentation called LC-DeepLab is proposed for detecting the trends and geometries of cracks on tunnel linings at the pixel level. The proposed method addresses the low accuracy of tunnel crack segmentation and the slow detection speed of conventional models in complex backgrounds. The novel algorithm is based on the DeepLabv3+ network framework. A lighter backbone network was used for feature extraction. Next, an efficient shallow feature fusion module that extracts crack features across pixels is designed to improve the edges of crack segmentation. Finally, an efficient attention module that significantly improves the anti-interference ability of the model in complex backgrounds is validated. Four classic semantic segmentation algorithms (fully convolutional network, pyramid scene parsing network, U-Net, and DeepLabv3+) are selected for comparative analysis to verify the effectiveness of the proposed algorithm. The experimental results show that LC-DeepLab can accurately segment and highlight cracks from tunnel linings in complex backgrounds, and the accuracy (mean intersection over union) is 78.26%. The LC-DeepLab can achieve a real-time segmentation of 416 × 416 × 3 defect images with 46.98 f/s and 21.85 Mb parameters.

  • RESEARCH ARTICLE
    Xiaojing GAO, Pengfei LI, Mingju ZHANG, Haifeng WANG, Zenghui LIU, Ziqi JIA
    Frontiers of Structural and Civil Engineering, 2023, 17(6): 901-914. https://doi.org/10.1007/s11709-023-0915-8

    The integrity and bearing capacity of segment joints in shield tunnels are associated closely with the mechanical properties of the joints. This study focuses on the mechanical characteristics and mechanism of a bolted circumferential joint during the entire bearing process. Simplified analytical algorithms for four stress stages are established to describe the bearing behaviors of the joint under a compressive bending load. A height adjustment coefficient, α, for the outer concrete compression zone is introduced into a simplified analytical model. Factors affecting α are determined, and the degree of influence of these factors is investigated via orthogonal numerical simulations. The numerical results show that α can be specified as approximately 0.2 for most metro shield tunnels in China. Subsequently, a case study is performed to verify the rationality of the simplified theoretical analysis for the segment joint via numerical simulations and experiments. Using the proposed simplified analytical algorithms, a parametric investigation is conducted to discuss the factors affecting the ultimate compressive bending capacity of the joint. The method for optimizing the joint flexural stiffness is clarified. The results of this study can provide a theoretical basis for optimizing the design and prediciting the damage of bolted segment joints in shield tunnels.

  • RESEARCH ARTICLE
    Jian ZHAO, Guangping HUANG, Lin LIAO, Wei Victor LIU
    Frontiers of Structural and Civil Engineering, 2023, 17(5): 722-731. https://doi.org/10.1007/s11709-023-0950-5

    The aim of this study is to appraise the potential of calcium sulfoaluminate (CSA) cement-based grouts in simulated permafrost environments. The hydration and performance of CSA cement-based grouts cured in cold environments (10, 0, and −10 °C) are investigated using a combination of tests, including temperature recording, X-ray diffraction (XRD) tests, thermogravimetric analysis (TGA), and unconfined compressive strength (UCS) tests. The recorded temperature shows a rapid increase in temperature at the early stage in all the samples. Meanwhile, results of the TGA and XRD tests show the generation of a significant quantity of hydration products, which indicates the rapid hydration of CSA cement-based grouts at the early stage at low temperatures. Consequently, the CSA cement-based grouts exhibit remarkably high early strength. The UCS values of the samples cured for 2 h at −10, 0, and 10 °C are 6.5, 12.0, and 12.3 MPa, respectively. The UCS of the grouts cured at −10, 0, and 10 °C increases continuously with age and ultimately reached 14.9, 19.0, and 30.6 MPa at 28 d, respectively. The findings show that the strength of grouts fabricated using CSA cement can develop rapidly in cold environments, thus rendering them promising for permafrost applications.

  • RESEARCH ARTICLE
    Yangchao RU, Liusheng HE, Huanjun JIANG
    Frontiers of Structural and Civil Engineering, 2023, 17(8): 1145-1162. https://doi.org/10.1007/s11709-023-0945-2

    To realize seismic-resilient reinforced concrete (RC) moment-resisting frame structures, a novel self-centering RC column with a rubber layer placed at the bottom (SRRC column) is proposed herein. For the column, the longitudinal reinforcement dissipates seismic energy, the rubber layer allows the rocking of the column, and the unbonded prestressed tendon enables self-centering capacity. A refined finite element model of the SRRC column is developed, the effectiveness of which is validated based on experimental results. Results show that the SRRC column exhibits stable energy dissipation capacity and no strength degradation; additionally, it can significantly reduce permanent residual deformation and mitigate damage to concrete. Extensive parametric studies pertaining to SRRC columns have been conducted to investigate the critical factors affecting their seismic performance.

  • RESEARCH ARTICLE
    Jiachong XIE, Xin HUANG, Zixin ZHANG, Guolong JIN
    Frontiers of Structural and Civil Engineering, 2023, 17(4): 503-521. https://doi.org/10.1007/s11709-023-0927-4

    This paper presents a novel approach for simulating the localized leakage behavior of segmentally lined tunnels based on a cohesive zone model. The proposed approach not only simulates localized leakage at the lining segment, but also captures the hydromechanically coupled seepage behavior at the segmental joints. It is first verified via a tunnel drainage experiment, which reveals its merits over the existing local hydraulic conductivity method. Subsequently, a parametric study is conducted to investigate the effects of the aperture size, stratum permeability, and spatial distribution of drainage holes on the leakage behavior, stratum seepage field, and leakage-induced mechanical response of the tunnel lining. The proposed approach yields more accurate results than the classical local hydraulic conductivity method. Moreover, it is both computationally efficient and stable. Localized leakage leads to reduced local ground pressure, which further induces outward deformation near the leakage point and slight inward deformation at its diametrically opposite side. A localized stress arch spanning across the leakage point is observed, which manifests as the rotation of the principal stresses in the adjacent area. The seepage field depends on both the number and location of the leakage zones. Pseudostatic seepage zones, in which the seepage rate is significantly lower than that of the adjacent area, appear when multiple seepage zones are considered. Finally, the importance of employing the hydromechanical coupled mechanism at the segment joints is highlighted by cases of shallowly buried tunnels subjected to surface loading and pressure tunnels while considering internal water pressure.

  • RESEARCH ARTICLE
    Zhi SUN, Limin SUN, Ye XIA
    Frontiers of Structural and Civil Engineering, 2023, 17(7): 981-993. https://doi.org/10.1007/s11709-023-0979-5

    This study modeled the moving-vehicle-induced forcing excitation on a single-span prismatic bridge as a multiple frequency-multiplication harmonic load on the modal coordinates of a linear elastic simple Euler–Bernoulli beam, and investigated the forced modal oscillation and resonance behavior of this type of dynamic system. The forced modal responses consist of multiple frequency-multiplication steady-state harmonics and one damped mono-frequency complementary harmonic. The analysis revealed that a moving load induces high-harmonic forced resonance amplification when the moving speed is low. To verify the occurrence of high-harmonic forced resonance, numerical tests were conducted on single-span simple beams based on structural modeling using the finite element method (FEM) and a moving sprung-mass oscillator vehicle model. The forced resonance amplification characteristics of the fundamental mode for beam response estimation are presented with consideration to different end restraint conditions. The results reveal that the high-harmonic forced resonance may be significant for the investigated beams subjected to vehicle loads moving at specific low speeds. For the investigated single-span simple beams, the moving vehicle carriage heaving oscillation modulates the beam modal frequency, but does not induce notable variation of the modal oscillation harmonic structure for the cases that vehicle of small mass moves in low speed.

  • RESEARCH ARTICLE
    He FEI, Yiqiang LU, Jinliang ZHANG, Xingchen LUO, Yimin XIA
    Frontiers of Structural and Civil Engineering, 2023, 17(9): 1370-1386. https://doi.org/10.1007/s11709-023-0947-0

    The tunnel boring machine (TBM) is typically used in hard-rock tunnel excavation. Owing to the unsatisfactory adaptability of TBM to the surrounding rock, when crossing high-strength and high-wear strata, the TBM can easily cause defects, such as abnormal wear on cutters and overload damage to bearings, thus affecting the construction efficiency and cost. Therefore, high-pressure waterjet technology should be applied to assist in rock breaking for efficient TBM tunneling. In this study, the effects of water pressure, nozzle diameter, and nozzle speed on cutting are investigated via laboratory experiments of cutting hard rock using high-pressure waterjets. The penetration performance of the TBM under different water pressures is investigated via a field industrial penetration test. The results show that high-pressure waterjets are highly efficient for rock breaking and are suitable for industrial applications, as they can accommodate the advancing speed of the TBM and achieve high-efficiency rock breaking. However, during the operation of high-pressure waterjets, the ambient temperature and waterjet temperature in the tunnel increase significantly, which weakens the cooling effect of the cutterhead and decreases the construction efficiency of the TBM. Therefore, temperature control and cooling measures for high-pressure waterjets during their long-term operation must be identified. This study provides a useful reference for the design and construction of high-pressure water-jet-assisted cutterheads for breaking road headers.

  • RESEARCH ARTICLE
    Yi-Feng YANG, Shao-Ming LIAO, Meng-Bo LIU
    Frontiers of Structural and Civil Engineering, 2023, 17(7): 994-1010. https://doi.org/10.1007/s11709-023-0942-5

    The moving trajectory of the pipe-jacking machine (PJM), which primarily determines the end quality of jacked tunnels, must be controlled strictly during the entire jacking process. Developing prediction models to support drivers in performing rectifications in advance can effectively avoid considerable trajectory deviations from the designed jacking axis. Hence, a gated recurrent unit (GRU)-based deep learning framework is proposed herein to dynamically predict the moving trajectory of the PJM. In this framework, operational data are first extracted from a data acquisition system; subsequently, they are preprocessed and used to establish GRU-based multivariate multistep-ahead direct prediction models. To verify the performance of the proposed framework, a case study of a large pipe-jacking project in Shanghai and comparisons with other conventional models (i.e., long short-term memory (LSTM) network and recurrent neural network (RNN)) are conducted. In addition, the effects of the activation function and input time-step length on the prediction performance of the proposed framework are investigated and discussed. The results show that the proposed framework can dynamically and precisely predict the PJM moving trajectory during the pipe-jacking process, with a minimum mean absolute error and root mean squared error (RMSE) of 0.1904 and 0.5011 mm, respectively. The RMSE of the GRU-based models is lower than those of the LSTM- and RNN-based models by 21.46% and 46.40% at the maximum, respectively. The proposed framework is expected to provide an effective decision support for moving trajectory control and serve as a foundation for the application of deep learning in the automatic control of pipe jacking.

  • RESEARCH ARTICLE
    Jin WANG, Weibing XU, Xiuli DU, Yanjiang CHEN, Mengjia DING, Rong FANG, Guang YANG
    Frontiers of Structural and Civil Engineering, 2023, 17(6): 827-854. https://doi.org/10.1007/s11709-023-0954-1

    The seismic performance of a fully fabricated bridge is a key factor limiting its application. In this study, a fiber element model of a fabricated concrete pier with grouting sleeve-prestressed tendon composite connections was built and verified. A numerical analysis of three types of continuous girder bridges was conducted with different piers: a cast-in-place reinforced concrete pier, a grouting sleeve-fabricated pier, and a grouting sleeve-prestressed tendon composite fabricated pier. Furthermore, the seismic performance of the composite fabricated pier was investigated. The results show that the OpenSees fiber element model can successfully simulate the hysteresis behavior and failure mode of the grouted sleeve-fabricated pier. Under traditional non-near-fault ground motions, the pier top displacements of the grouting sleeve-fabricated pier and the composite fabricated pier were less than those of the cast-in-place reinforced concrete pier. The composite fabricated pier had a good self-centering capability. In addition, the plastic hinge zones of the grouting sleeve-fabricated pier and the composite fabricated pier shifted to the joint seam and upper edge of the grouting sleeve, respectively. The composite fabricated pier with optimal design parameters has good seismic performance and can be applied in high-intensity seismic areas; however, the influence of pile-soil interaction on its seismic performance should not be ignored.

  • RESEARCH ARTICLE
    Mehrdad KARAMI, Mohammad NAZARI-SHARABIAN, James BRISTOW, Moses KARAKOUZIAN
    Frontiers of Structural and Civil Engineering, 2023, 17(5): 796-811. https://doi.org/10.1007/s11709-023-0922-9

    Conventional geotechnical software limits the use of the strength reduction method (SRM) based on the Mohr–Coulomb failure criterion to analyze the slope safety factor (SF). The use of this constitutive model is impractical for predicting the behavior of all soil types. In the present study, an innovative numerical technique based on SRM was developed to determine SF using the finite element method and considering the extended Cam–clay constitutive model for clayey gravel soil as opposed to the Mohr–Coulomb model. In this regard, a novel user subroutine code was employed in ABAQUS to reduce the stabilizing forces to determine the failure surfaces and resist and drive shear stresses on a slope. After validating the proposed technique, it was employed to investigate the performance of terraced slopes in the context of a case study. The impacts of geometric parameters and different water table elevations on the SF were examined. The results indicated that an increase in the upper and lower slope heights led to a decrease in SF, and a slight increase in the horizontal offset led to an increase in the SF. Moreover, when the water table elevation was lower than the toe of the terraced slope, the SF increased because of the increase in the uplift force as a resistant component.

  • RESEARCH ARTICLE
    Anbang CHEN, Xiaoshan LIN, Zi-Long ZHAO, Yi Min XIE
    Frontiers of Structural and Civil Engineering, 2023, 17(5): 669-685. https://doi.org/10.1007/s11709-023-0963-0

    Owing to advancement in advanced manufacturing technology, the reinforcement design of concrete structures has become an important topic in structural engineering. Based on bi-directional evolutionary structural optimization (BESO), a new approach is developed in this study to optimize the reinforcement layout in steel-reinforced concrete (SRC) structures. This approach combines a minimum compliance objective function with a hybrid truss-continuum model. Furthermore, a modified bi-directional evolutionary structural optimization (M-BESO) method is proposed to control the level of tensile stress in concrete. To fully utilize the tensile strength of steel and the compressive strength of concrete, the optimization sensitivity of steel in a concrete–steel composite is integrated with the average normal stress of a neighboring concrete. To demonstrate the effectiveness of the proposed procedures, reinforcement layout optimizations of a simply supported beam, a corbel, and a wall with a window are conducted. Clear steel trajectories of SRC structures can be obtained using both methods. The area of ​​critical tensile stress in concrete yielded by the M-BESO is more than 40% lower than that yielded by the uniform design and BESO. Hence, the M-BESO facilitates a fully digital workflow that can be extremely effective for improving the design of steel reinforcements in concrete structures.

  • RESEARCH ARTICLE
    Quoc-Hoa PHAM, Trung Thanh TRAN, Phu-Cuong NGUYEN
    Frontiers of Structural and Civil Engineering, 2023, 17(7): 1072-1085. https://doi.org/10.1007/s11709-023-0951-4

    The main objective of this study is to further extend the mixed integration smoothed quadrilateral element with 20 unknowns of displacement (MISQ20) to investigate the nonlinear dynamic responses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates with four types of carbon nanotube distributions. The smooth finite element method is used to enhance the accuracy of the Q4 element and avoid shear locking without using any shear correction factors. This method yields accurate results even if the element exhibits a concave quadrilateral shape and reduces the error when the element meshing is rough. Additionally, the element stiffness matrix is established by integrating the boundary of the smoothing domains. The motion equation of the FG-CNTRC plates is solved by adapting the Newmark method combined with the Newton–Raphson algorithm. Subsequently, the calculation program is coded in the MATLAB software and verified by comparing it with other published solutions. Finally, the effects of the input parameters on the nonlinear vibration of the plates are investigated.

  • RESEARCH ARTICLE
    Yu DIAO, Yuhao GUO, Zhenyang JIA, Gang ZHENG, Weiqiang PAN, Dongfan SHANG, Ying ZHANG
    Frontiers of Structural and Civil Engineering, 2023, 17(7): 1021-1032. https://doi.org/10.1007/s11709-023-0952-3

    In recent years, concrete and reinforced concrete piles have been widely used to stabilize soft ground under embankments. Previous research has shown that bending failure, particularly during rapid filling on soft ground, is the critical failure mode for pile-supported embankments. Here, we propose an efficient two-stage method that combines a test-verified soil deformation mechanism and Poulos’ solution for pile–soil interaction to investigate the bending behavior of piles supporting embankments on soft ground. The results reveal that there are three possible bending failure scenarios for such piles: at the interface between the soft and firm ground layers, at mid-depths of the fan zone, and at the boundary of the soil deformation mechanism. The location of the bending failure depends on the position and relative stiffness of the given pile. Furthermore, the effect of embedding a pile into a firm ground layer on the bending behavior was investigated. When the embedded length of a pile exceeded a critical value, the bending moment at the interface between the soft and firm ground layers reached a limiting value. In addition, floating piles that are not embedded exhibit an overturning pattern of movement in the soft ground layer, and a potential failure is located in the upper part of these piles.

  • RESEARCH ARTICLE
    Xuefei HONG, Dingli ZHANG, Zhenyu SUN
    Frontiers of Structural and Civil Engineering, 2023, 17(5): 745-762. https://doi.org/10.1007/s11709-023-0935-4

    An analytical model based on complex variable theory is proposed to investigate ground responses due to shallow tunneling in multi-layered ground with an arbitrary ground surface load. The ground layers are assumed to be linear-elastic with full-stick contact between them. To solve the proposed multi-boundary problem, a series of analytic functions is introduced to accurately express the stresses and displacements contributed by different boundaries. Based on the principle of linear-elastic superposition, the multi-boundary problem is converted into a superposition of multiple single-boundary problems. The conformal mappings of different boundaries are independent of each other, which allows the stress and displacement fields to be obtained by the sum of components from each boundary. The analytical results are validated based on numerical and in situ monitoring results. The present model is superior to the classical model for analyzing ground responses of shallow tunneling in multi-layered ground; thus, it can be used with assurance to estimate the ground movement and surface building safety of shallow tunnel constructions beneath surface buildings. Moreover, the solution for the ground stress distribution can be used to estimate the safety of a single-layer composite ground.

  • RESEARCH ARTICLE
    Hui WANG, Yong YUAN, Junnan QIU, Yuan XUE, Guangzhou XIE, Qian CHENG, Yuanchao DING, Qing AI
    Frontiers of Structural and Civil Engineering, 2023, 17(6): 870-883. https://doi.org/10.1007/s11709-023-0977-7

    Prefabricated internal structures of road tunnels, consisting of precast elements and the connections between them, provide advantages in terms of quality control and manufacturing costs. However, the limited construction space in tunnels creates challenges for on-site assembly. To identify feasible connecting joints, flexural tests of precast straight beams connected by welding-spliced or lap-spliced reinforcements embedded in normal concrete or ultra-high-performance fiber-reinforced concrete (UHPFRC) are first performed and analyzed. With an improvement in the strength grade of the closure concrete for the lap-spliced joint, the failure of the beam transforms from a brittle splitting mode to a ductile flexural mode. The beam connected by UHPFRC100 with short lap-spliced reinforcements can achieve almost equivalent mechanical performance in terms of the bearing capacity, ductility, and stiffness as the beam connected by normal concrete with welding-spliced reinforcements. This favorable solution is then applied to the connection of neighboring updeck slabs resting on columns in a double-deck tunnel. The applicability is validated by flexural tests of T-shaped joints, which, fail in a ductile fashion dominated by the ultimate bearing capacity of the precast elements, similar to the corresponding straight beam. The utilization of UHPFRC significantly reduces the required lap-splice length of reinforcements owing to its strong bonding strength.

  • RESEARCH ARTICLE
    Shimin WANG, Xiaoyu PENG, Hang ZHOU, Xuhu HE, Anqi ZHOU, Bing CHEN
    Frontiers of Structural and Civil Engineering, 2023, 17(5): 780-795. https://doi.org/10.1007/s11709-023-0944-3

    Metro shield tunnels under the lateral relaxation of soil (LRS) are susceptible to significant lateral deformations, which jeopardizes the structural safety and waterproofing. However, deformation control standards for such situations have not been clearly defined. Therefore, based on a specific case, a model test is conducted to realize the LRS of a shield tunnel in a sandy stratum to reveal its effect on segment liners. Subsequently, a deformation control criterion is established. The LRS is simulated by linearly reducing the loads applied to the lateral sides of the segment structure. During lateral unloading, the lateral earth pressure coefficient on the segment decreases almost exponentially, and the structural deformation is characterized by horizontal expansion at the arch haunches and vertical shrinkage at the arch vault and arch bottom. Based on the mechanical pattern of the segment structure and the acoustic emission, the deformation response of a segment can be classified into three stages: elastic and quasi-elastic, damage, and rapid deformation development. For a shield tunnel with a diameter of approximately 6 m and under the lateral relaxation of sandy soil, when the ellipticity of the segment is less than 2.71%, reinforcement measures are not required. However, the segment deformation must be controlled when the ellipticity is 2.71% to 3.12%; in this regard, an ellipticity of 3% can be used as a benchmark in similar engineering projects.

  • RESEARCH ARTICLE
    Hua-Fei HE, Zhao-Ping LI, Shao-Lin MA, Xiang-Yang CUI
    Frontiers of Structural and Civil Engineering, 2023, 17(5): 763-779. https://doi.org/10.1007/s11709-023-0917-6

    A disadvantage of the conventional quasi-static test method is that it does not consider the soil restraint effect. A new method to test the seismic performance of prefabricated specimens for underground assembled structures is proposed, which can realistically reflect the strata restraint effect on the underground structure. Laboratory work combined with finite element (FE) analysis is performed in this study. Three full-scale sidewall specimens with different joint forms are designed and fabricated. Indices related to the seismic performance and damage modes are analyzed comprehensively to reveal the mechanism of the strata restraint effect on the prefabricated sidewall components. Test results show that the strata restraint effect effectively improves the energy dissipation capacity, load-bearing capacity, and the recoverability of the internal deformation of the precast sidewall components. However, the strata restraint effect reduces the ductility of the precast sidewall components and aggravates the shear and bending deformations in the core region of the connection joints. Additionally, the strata restraint effect significantly affects the seismic performance and damage mode of the prefabricated sidewall components. An FE model that can be used to conduct a seismic performance study of prefabricated specimens for underground assembled structures is proposed, and its feasibility is verified via comparison with test data.

  • RESEARCH ARTICLE
    Yejun DING, Lin ZHAO, Rong XIAN, Gao LIU, Haizhu XIAO, Yaojun GE
    Frontiers of Structural and Civil Engineering, 2023, 17(10): 1465-1476. https://doi.org/10.1007/s11709-023-0980-z

    Aerodynamic instability owing to aerostatic and flutter-related failures is a significant concern in the wind-resistant design of long-span suspension bridges. Based on the dynamic characteristics of suspension bridges with spans ranging from 888 to 1991 m, we proposed fitted equations for increasing spans and base frequencies. Finite element models of suspension bridges with increasing span from 1000 to 5000 m were constructed. The structural parameters were optimized to follow the fitted tendencies. To analyze the aerodynamic instability, streamlined single-box section (SBS), lattice truss section (LTS), narrow slotted section (NSS), and wide slotted section (WSS) were considered. We performed three-dimensional (3-D) full-mode flutter analysis and nonlinear aerostatic instability analysis. The flutter critical wind speed continuously decreases with span growth, showing an unlimited approaching phenomenon. Regarding aerostatic instability, the instability wind speed decreases with span to approximately 3000 m, and increases when the span is in the range of 3000 to 5000 m. Minimum aerostatic instability wind speed with SBS or LTS girder would be lower than observed maximal gust wind speed, indicating the probability of aerostatic instability. This study proposes that suspension bridge with span approximately 3000 m should be focused on both aerostatic instability and flutter, and more aerodynamic configuration optimistic optimizations for flutter are essential for super long-span suspension bridges with spans longer than 3000 m.

  • RESEARCH ARTICLE
    Amirhosein SHABANI, Mahdi KIOUMARSI, Vagelis PLEVRIS
    Frontiers of Structural and Civil Engineering, 2023, 17(6): 855-869. https://doi.org/10.1007/s11709-023-0972-z

    Seismic analysis of historical masonry bridges is important for authorities in all countries hosting such cultural heritage assets. The masonry arch bridge investigated in this study was built during the Roman period and is on the island of Rhodes, in Greece. Fifteen seismic records were considered and categorized as far-field, pulse-like near-field, and non-pulse-like near-field. The earthquake excitations were scaled to a target spectrum, and nonlinear time-history analyses were performed in the transverse direction. The performance levels were introduced based on the pushover curve, and the post-earthquake damage state of the bridge was examined. According to the results, pulse-like near-field events are more damaging than non-pulse-like near-field ground motions. Additionally the bridge is more vulnerable to far-field excitations than near-field events. Furthermore, the structure will suffer extensive post-earthquake damage and must be retrofitted.

  • RESEARCH ARTICLE
    Changhai YU, Xiaolong LV, Dan HUANG, Dongju JIANG
    Frontiers of Structural and Civil Engineering, 2023, 17(7): 1086-1099. https://doi.org/10.1007/s11709-023-0976-8

    An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein. First, parametric finite element analysis (FEA) models of the support structure are established by considering stochastic variables. Subsequently, a surrogate model is constructed using a radial basis function (RBF) neural network to replace the time-consuming FEA. The uncertainties of loads, material properties, key sizes of structural components, and soil properties are considered. The uncertainty of soil properties is characterized by the variabilities of the unit weight, friction angle, and elastic modulus of soil. Structure reliability is determined via Monte Carlo simulation, and five limit states are considered, i.e., structural stresses, tower top displacements, mudline rotation, buckling, and natural frequency. Based on the RBF surrogate model and particle swarm optimization algorithm, an optimal design is established to minimize the volume. Results show that the proposed method can yield an optimal design that satisfies the target reliability and that the constructed RBF surrogate model significantly improves the optimization efficiency. Furthermore, the uncertainty of soil parameters significantly affects the optimization results, and increasing the monopile diameter is a cost-effective approach to cope with the uncertainty of soil parameters.

  • RESEARCH ARTICLE
    Hui ZHOU, Jiancheng XIAO, Manchao HE, Jingjing LU, Zhigang TAO, Futong XU, Congcong HOU
    Frontiers of Structural and Civil Engineering, 2023, 17(10): 1477-1501. https://doi.org/10.1007/s11709-023-0966-x

    Based on significant improvements in engineering materials, three advanced engineering measures have been proposed—super anchor cables, high-strength concrete anti-fault caverns, and grouting modification using high-strength concrete-to resist fault dislocation in the surrounding rock near tunnels crossing active strike-slip faults. Moreover, single- or multiple-joint advanced engineering measures form the local rock mass-anti-fault (LRAF) method. A numerical method was used to investigate the influence of LRAF methods on the stress and displacement fields of the surrounding rock, and the anti-fault effect was evaluated. Finally, the mechanism of action of the anchor cable was verified using a three-dimensional numerical model. The numerical results indicated that the anchor cable and grouting modification reduced the displacement gradient of the local surrounding rock near the tunnels crossing fault. Furthermore, anchor cable and grouting modifications changed the stress field of the rock mass in the modified area. The tensile stress field of the rock mass in the modified anchor cable area was converted into a compressive stress field. The stress field in the modified grouting area changed from shear stress in the fault slip direction to tensile stress in the axial tunnel direction. The anti-fault cavern resisted the dislocation displacement and reduced the maximum dislocation magnitude, displacement gradient, and shear stress. Among the three advanced engineering measures, the anchor cable was the core of the three advanced engineering measures. An anchor cable, combined with other LRAF measures, can form an artificial safety island at the cross-fault position of the rock mass to protect the tunnel. The research results provide a new supporting idea for the surrounding rock of tunnels crossing active strike-slip faults.

  • RESEARCH ARTICLE
    Hussein DALFI, Anwer AL-OBAIDI, Abdalameer TARIQ, Hussein RAZZAQ, Roham RAFIEE
    Frontiers of Structural and Civil Engineering, 2023, 17(9): 1357-1369. https://doi.org/10.1007/s11709-023-0996-4

    In this study, the effect of fiber angle on the tensile load-bearing performance and damage failure characteristics of glass composite laminates was investigated experimentally, analytically, and numerically. The glass fabric in the laminate was perfectly aligned along the load direction (i.e., at 0°), offset at angles of 30° and 45°, or mixed in different directions (i.e., 0°/30° or 0°/45°). The composite laminates were fabricated using vacuum-assisted resin molding. The influence of fiber orientation angle on the mechanical properties and stiffness degradation of the laminates was studied via cyclic tensile strength tests. Furthermore, simulations have been conducted using finite element analysis and analytical approaches to evaluate the influence of fiber orientation on the mechanical performance of glass laminates. Experimental testing revealed that, although the composite laminates laid along the 0° direction exhibited the highest stiffness and strength, their structural performance deteriorated rapidly. We also determined that increasing the fiber offset angle (i.e., 30°) could optimize the mechanical properties and damage failure characteristics of glass laminates. The results of the numerical and analytical approaches demonstrated their ability to capture the mechanical behavior and damage failure modes of composite laminates with different fiber orientations, which may be used to prevent the catastrophic failures that occur in composite laminates.

  • RESEARCH ARTICLE
    Meng HUANG, Mingli HUANG, Ze YANG, Yuan SONG, Zhien ZHANG
    Frontiers of Structural and Civil Engineering, 2023, 17(8): 1249-1263. https://doi.org/10.1007/s11709-023-0974-x

    Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnels. A large-scale model test was designed and conducted, innovatively transforming the external water pressure of the lining construction joint into internal water pressure. The effects of the embedded position and waterstop type on the water pressure resistance of the construction joint were analyzed, and the reliability of the model test was verified via numerical calculations. The results show that using waterstops can significantly improve the water pressure resistance of lining construction joints. The water pressure resistance of the lining construction joint is positively correlated with the lining thickness and embedded depth of the waterstop. In addition, the type of waterstop significantly influences the water pressure resistance of lining construction joints. The test results show that the water pressure resistance of the embedded transverse reinforced waterstop is similar to that of the steel plate waterstop, and both have more advantages than the rubber waterstop. The water pressure resistance of the construction joint determined via numerical calculations is similar to the model test results, indicating that the model test results have high accuracy and reliability. This study provides a reference for similar projects and has wide applications.

  • RESEARCH ARTICLE
    Peipei KONG, Gang XU, Liuxu FU, Xianhua CHEN, Wei WEI
    Frontiers of Structural and Civil Engineering, 2023, 17(4): 625-636. https://doi.org/10.1007/s11709-023-0938-1

    The research and development of high-performance pavement materials has been intensified owing to the demand for long-life pavements. This study is performed to develop a novel pavement material using waste rubber powder, waste lubricating by-product (LBP), and asphalt. Subsequently, the aging properties and aging mechanism of activated waste rubber powder modified asphalt (ARMA) are investigated based on its rheological properties and micro-characterization. The rheological results show that, compared with waste rubber powder modified asphalt (RMA), ARMA offers a higher aging resistance and a longer fatigue life. A comparison and analysis of the rheological aging parameters of ARMA and RMA show that LBP activation diminishes the aging sensitivity of ARMA. The micro-characterization result shows that the aging of ARMA may be caused by the fact that LBP-activated waste rubber powder is more reactive and can form a dense colloidal structure with asphalt. Therefore, the evaporation loss of asphalt light components by heat and the damage to the colloidal structure by oxygen during the aging process are impeded, and the thermal-oxidative aging resistance of ARMA is improved.

  • RESEARCH ARTICLE
    Boshun GAO, Xin XIAO, Jiayu WANG, Ligao JIANG, Qing YAO
    Frontiers of Structural and Civil Engineering, 2023, 17(8): 1199-1210. https://doi.org/10.1007/s11709-023-0949-y

    The grade crossings and adjacent pavements of urban trams are generally subjected to complex load conditions and are susceptible to damage. Therefore, in this study, a novel pavement structure between tram tracks and roads constructed using polyurethane (PU) elastic concrete and ultra-high-performance concrete (UHPC), referred to as a track-road transitional pavement (TRTP), is proposed. Subsequently, its performance and feasibility are evaluated using experimental and numerical methods. First, the mechanical properties of the PU elastic concrete are evaluated. The performance of the proposed structure is investigated using a three-dimensional finite element model, where vehicle-induced dynamic and static loads are considered. The results show that PU elastic concrete and the proposed combined TRTP are applicable and functioned as intended. Additionally, the PU elastic concrete achieved sufficient performance. The recommended width of the TRTP is approximately 50 mm. Meanwhile, the application of UHPC under a PU elastic concrete layer significantly reduces vertical deformation. Results of numerical calculations confirmed the high structural performance and feasibility of the proposed TRTP. Finally, material performance standards are recommended to provide guidance for pavement design and the construction of tram-grade crossings in the future.

  • RESEARCH ARTICLE
    Dongning SUN, Baoning HONG, Xin LIU, Ke SHENG, Guisen WANG, Zhiwei SHAO, Yunlong YAO
    Frontiers of Structural and Civil Engineering, 2023, 17(6): 964-979. https://doi.org/10.1007/s11709-023-0978-6

    To investigate the mechanical process that occurs between rocks and tooth hobs, the crushing of sandstone with a tooth hob was simulated using reconstructed multi-mineral mesoscopic numerical models of various grain-sized sandstone samples. When a piece of sandstone is crushed by the tooth of a hob rolling at a constant speed, the resultant reaction forces of the sandstone on the tooth first hinder and then contribute to the rolling of the hob. The absolute value of the longitudinal reaction force is significantly higher than that of the lateral reaction force. Because the tooth was subjected to reaction forces from the sandstone, forces and moments were applied to the hob in order to keep the hob rolling. The applied forces were equal in value and opposite in direction to the reaction forces of the sandstone on the tooth. Three typical curves of the work done by the applied forces and moment were obtained, and the contribution of the applied lateral force and moment to the total work done for crushing sandstones was variable; however, no work was done by the applied longitudinal force. Moreover, the applied longitudinal force and total work were positively correlated with the strength of sandstone samples. The total work, applied forces, and moment increased with the maximum penetration depth of the tooth in the sandstone.

  • RESEARCH ARTICLE
    Naveen Revanna, Charles K. S. Moy
    Frontiers of Structural and Civil Engineering, 2023, 17(4): 649-668. https://doi.org/10.1007/s11709-023-0919-4

    Externally bonded (EB) and near-surface mounted (NSM) bonding are two widely adopted and researched strengthening methods for reinforced-concrete structures. EB composite substrates are easy to reach and repair using appropriate surface treatments, whereas NSM techniques can be easily applied to the soffit and concrete member sides. The EB bonded fiber-reinforced polymer (FRP) technique has a significant drawback: combustibility, which calls for external protective agents, and textile reinforced mortar (TRM), a class of EB composites that is non-combustible and provides a similar functionality to any EB FRP-strengthened substrate. This study employs a finite element analysis technique to investigate the failing failure of carbon textile reinforced mortar (CTRM)-strengthened reinforced concrete beams. The principal objective of this numerical study was to develop a finite element model and validate a set of experimental data in existing literature. A set of seven beams was modelled and calibrated to obtain concrete damage plasticity (CDP) parameters. The predicted results, which were in the form of load versus deflection, load versus rebar strain, tensile damage, and compressive damage patterns, were in good agreement with the experimental data. Moreover, a parametric study was conducted to verify the applicability of the numerical model and study various influencing factors such as the concrete strength, internal reinforcement, textile roving spacing, and externally-applied load span. The ultimate load and deflection of the predicted finite element results had a coefficient of variation (COV) of 6.02% and 5.7%, respectively. A strain-based numerical comparison with known methods was then conducted to investigate the debonding mechanism. The developed finite element model can be applied and tailored further to explore similar TRM-strengthened beams undergoing debonding, and the preventive measures can be sought to avoid premature debonding.