Tunable near-infrared light emission from layered TiS3 nanoribbons

Junrong Zhang, Cheng Chen, Yanming Wang, Yang Lu, Honghong Li, Xingang Hou, Yaning Liang, Long Fang, Du Xiang, Kai Zhang, Junyong Wang

PDF(6319 KB)
PDF(6319 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43203. DOI: 10.1007/s11467-023-1376-1
RESEARCH ARTICLE

Tunable near-infrared light emission from layered TiS3 nanoribbons

Author information +
History +

Abstract

The low-dimensional light source shows promise in photonic integrated circuits. Stable layered van der Waals material that exhibits luminescence in the near-infrared optical communication waveband is an essential component in on-chip light sources. Herein, the tunable near-infrared photoluminescence (PL) of the air-stable layered titanium trisulfide (TiS3) is reported. Compared with iodine particles as a transport agent, TiS3 grown by chemical vapor transport using sulfur powder as a transport agent has fewer sulfur vacancies, which increases the luminescence intensity by an order of magnitude. The PL emission wavelength can be regulated in the near-infrared regime by thickness control. In addition, we observed an interesting anisotropic strain response of PL in layered TiS3 nanoribbon: a blue shift of PL was achieved when the uniaxial tensile strain was applied along the b-axis, while a negligible shift was observed when the strain was applied along the a-axis. Our work reveals the tunable near-infrared luminescent properties of TiS3 nanoribbons, suggesting their potential applications as near-infrared light sources in photonic integrated circuits.

Graphical abstract

Keywords

titanium trisulfide / near-infrared luminescence / S-vacancy / tunability / strain engineering

Cite this article

Download citation ▾
Junrong Zhang, Cheng Chen, Yanming Wang, Yang Lu, Honghong Li, Xingang Hou, Yaning Liang, Long Fang, Du Xiang, Kai Zhang, Junyong Wang. Tunable near-infrared light emission from layered TiS3 nanoribbons. Front. Phys., 2024, 19(4): 43203 https://doi.org/10.1007/s11467-023-1376-1

References

[1]
S. Famà , L. Colace , G. Masini , G. Assanto , H. C. Luan . High performance germanium-on-silicon detectors for optical communications. Appl. Phys. Lett., 2002, 81(4): 586
CrossRef ADS Google scholar
[2]
D. A. B. Miller . Device requirements for optical interconnects to silicon chips. Proc. IEEE, 2009, 97(7): 1166
CrossRef ADS Google scholar
[3]
A. Shacham , K. Bergman , L. P. Carloni . Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput., 2008, 57(9): 1246
CrossRef ADS Google scholar
[4]
M. Streshinsky , R. Ding , Y. Liu , A. Novack , C. Galland , A. E. J. Lim , P. Guo-Qiang Lo , T. Baehr-Jones , M. Hochberg . The road to affordable, large-scale silicon photonics. Opt. Photonics News, 2013, 24(9): 32
CrossRef ADS Google scholar
[5]
J. Yang , M. Tang , S. Chen , H. Liu . From past to future: On-chip laser sources for photonic integrated circuits. Light Sci. Appl., 2023, 12(1): 16
CrossRef ADS Google scholar
[6]
W. C. Yue , P. J. Yao , L. X. Xu , H. Ming . All-dielectric bowtie waveguide with deep subwavelength mode confinement. Front. Phys., 2018, 13(4): 134207
CrossRef ADS Google scholar
[7]
D. S. Liu , J. Wu , H. Xu , Z. Wang . Emerging light-emitting materials for photonic integration. Adv. Mater., 2021, 33(4): 2003733
CrossRef ADS Google scholar
[8]
J. You , Y. Luo , J. Yang , J. Zhang , K. Yin , K. Wei , X. Zheng , T. Jiang . Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photonics Rev., 2020, 14(12): 2000239
CrossRef ADS Google scholar
[9]
C. B. Qin , X. L. Liang , S. P. Han , G. F. Zhang , R. Y. Chen , J. Y. Hu , L. T. Xiao , S. T. Jia . Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation. Front. Phys., 2021, 16(1): 12501
CrossRef ADS Google scholar
[10]
K. F. Mak , C. Lee , J. Hone , J. Shan , T. F. Heinz . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105(13): 136805
CrossRef ADS Google scholar
[11]
R. S. Sundaram , M. Engel , A. Lombardo , R. Krupke , A. C. Ferrari , P. Avouris , M. Steiner . Electroluminescence in single layer MoS2. Nano Lett., 2013, 13(4): 1416
CrossRef ADS Google scholar
[12]
D. H. Lien , S. Z. Uddin , M. Yeh , M. Amani , H. Kim , J. W. III Ager , E. Yablonovitch , A. Javey . Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science, 2019, 364(6439): 468
CrossRef ADS Google scholar
[13]
M. Paur , A. J. Molina-Mendoza , R. Bratschitsch , K. Watanabe , T. Taniguchi , T. Mueller . Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat. Commun., 2019, 10(1): 1709
CrossRef ADS Google scholar
[14]
S. Wang , J. Wang , W. Zhao , F. Giustiniano , L. Chu , I. Verzhbitskiy , J. Zhou Yong , G. Eda . Efficient carrier-to-exciton conversion in field emission tunnel diodes based on MIS-type van der Waals heterostack. Nano Lett., 2017, 17(8): 5156
CrossRef ADS Google scholar
[15]
J. Feng , Y. Li , J. Zhang , Y. Tang , H. Sun , L. Gan , C. Z. Ning . Injection-free multiwavelength electroluminescence devices based on monolayer semiconductors driven by an alternating field. Sci. Adv., 2022, 8(5): eabl5134
CrossRef ADS Google scholar
[16]
D. H. Lien , M. Amani , S. B. Desai , G. H. Ahn , K. Han , J. H. He , J. W. III Ager , M. C. Wu , A. Javey . Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nat. Commun., 2018, 9(1): 1229
CrossRef ADS Google scholar
[17]
N. Gupta , H. Kim , N. S. Azar , S. Z. Uddin , D. H. Lien , K. B. Crozier , A. Javey . Bright mid-wave infrared resonant-cavity light-emitting diodes based on black phosphorus. Nano Lett., 2022, 22(3): 1294
CrossRef ADS Google scholar
[18]
N. Higashitarumizu , S. Tajima , J. Kim , M. Cai , A. Javey . Long operating lifetime mid-infrared LEDs based on black phosphorus. Nat. Commun., 2023, 14(1): 4845
CrossRef ADS Google scholar
[19]
Y. Wang , Q. Yu , J. Li , J. Wang , K. Zhang . Insight into the growth mechanism of black phosphorus. Front. Phys., 2023, 18(4): 43603
CrossRef ADS Google scholar
[20]
C. Ruppert , B. Aslan , T. F. Heinz . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231
CrossRef ADS Google scholar
[21]
Y.Q. BieG.GrossoM.HeuckM.M. FurchiY.CaoJ.ZhengD.BunandarE.Navarro-MoratallaL.ZhouD.K. EfetovT.TaniguchiK.WatanabeJ.KongD.EnglundP.Jarillo-Herrero, A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits, Nat. Nanotechnol. 12(12), 1124 (2017)
[22]
J. Yang , R. Xu , J. Pei , Y. W. Myint , F. Wang , Z. Wang , S. Zhang , Z. Yu , Y. Lu . Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl., 2015, 4(7): e312
CrossRef ADS Google scholar
[23]
H. Shu . Highly-anisotropic carrier transport and optical properties of two-dimensional titanium trisulfide. J. Mater. Sci., 2022, 57(5): 3486
CrossRef ADS Google scholar
[24]
Z. Lian , Z. Jiang , T. Wang , M. Blei , Y. Qin , M. Washington , T. M. Lu , S. Tongay , S. Zhang , S. F. Shi . Anisotropic band structure of TiS3 nanoribbon revealed by polarized photocurrent spectroscopy. Appl. Phys. Lett., 2020, 117(7): 073101
CrossRef ADS Google scholar
[25]
J. Dai , X. C. Zeng . Titanium trisulfide monolayer: Theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew. Chem. Int. Ed., 2015, 54(26): 7572
CrossRef ADS Google scholar
[26]
Y. Jin , X. Li , J. Yang . Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): A new platform for nano-electronics and optics. Phys. Chem. Chem. Phys., 2015, 17(28): 18665
CrossRef ADS Google scholar
[27]
I. J. Ferrer , J. R. Ares , J. M. Clamagirand , M. Barawi , C. Sánchez . Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Films, 2013, 535: 398
CrossRef ADS Google scholar
[28]
J. O. Island , M. Barawi , R. Biele , A. Almazán , J. M. Clamagirand , J. R. Ares , C. Sánchez , H. S. J. van der Zant , J. V. Álvarez , R. D’Agosta , I. J. Ferrer , A. Castellanos-Gomez . TiS3 transistors with tailored morphology and electrical properties. Adv. Mater., 2015, 27(16): 2595
CrossRef ADS Google scholar
[29]
A. Khatibi , R. H. Godiksen , S. B. Basuvalingam , D. Pellegrino , A. A. Bol , B. Shokri , A. G. Curto . Anisotropic infrared light emission from quasi-1D layered TiS3. 2D Mater., 2019, 7(1): 015022
CrossRef ADS Google scholar
[30]
Z. Tian , X. Guo , D. Wang , D. Sun , S. Zhang , K. Bu , W. Zhao , F. Huang . Enhanced charge carrier lifetime of TiS3 photoanode by introduction of S22− vacancies for efficient photoelectrochemical hydrogen evolution. Adv. Funct. Mater., 2020, 30(21): 2001286
CrossRef ADS Google scholar
[31]
Y. Wei , Z. Zhou , R. Long . Defects slow down nonradiative electron–hole recombination in TiS3 nanoribbons: A time-domain ab initio study. J. Phys. Chem. Lett., 2017, 8(18): 4522
CrossRef ADS Google scholar
[32]
K. Wu , E. Torun , H. Sahin , B. Chen , X. Fan , A. Pant , D. Parsons Wright , T. Aoki , F. M. Peeters , E. Soignard , S. Tongay . Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3. Nat. Commun., 2016, 7(1): 12952
CrossRef ADS Google scholar
[33]
K.EndoH.IharaK.WatanabeS.I. Gonda, XPS study of one-dimensional compounds: TiS3, J. Solid State Chem. 44(2), 268 (1982)
[34]
A. S. Shkvarin , Y. M. Yarmoshenko , M. V. Yablonskikh , A. I. Merentsov , A. N. Titov . An X-ray spectrscopy study of the electronic structure of TiS3. J. Struct. Chem., 2014, 55(6): 1039
CrossRef ADS Google scholar
[35]
M. E. Fleet , S. L. Harmer , X. Liu , H. W. Nesbitt . Polarized X-ray absorption spectroscopy and XPS of TiS3: S K- and Ti L-edge XANES and S and Ti 2p XPS. Surf. Sci., 2005, 584(2−3): 133
CrossRef ADS Google scholar
[36]
X. L. Li , W. P. Han , J. B. Wu , X. F. Qiao , J. Zhang , P. H. Tan . Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater., 2017, 27(19): 1604468
CrossRef ADS Google scholar
[37]
A. J. Molina-Mendoza , M. Barawi , R. Biele , E. Flores , J. R. Ares , C. Sánchez , G. Rubio-Bollinger , N. Agraït , R. D’Agosta , I. J. Ferrer , A. Castellanos-Gomez . Electronic bandgap and exciton binding energy of layered semiconductor TiS3. Adv. Electron. Mater., 2015, 1(9): 1500126
CrossRef ADS Google scholar
[38]
A. H. Firouzkhani , M. Vaez-Zadeh , H. Jamnezhad , M. Berahman . Electronic and optical properties of monolayer TiS3: DFT calculation. J. Optoelectron. Adv. Mater., 2020, 22(11−12): 623
[39]
J. Kang , L. W. Wang . Robust band gap of TiS3 nanofilms. Phys. Chem. Chem. Phys., 2016, 18(22): 14805
CrossRef ADS Google scholar
[40]
C. Chen , F. Chen , X. Chen , B. Deng , B. Eng , D. Jung , Q. Guo , S. Yuan , K. Watanabe , T. Taniguchi , M. L. Lee , F. Xia . Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett., 2019, 19(3): 1488
CrossRef ADS Google scholar
[41]
Y. Li , Z. Hu , S. Lin , S. K. Lai , W. Ji , S. P. Lau . Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater., 2017, 27(19): 1600986
CrossRef ADS Google scholar
[42]
J. K. Qin , H. L. Sun , T. Su , W. Zhao , L. Zhen , Y. Chai , C. Y. Xu . Strain engineering of quasi-1D layered TiS3 nanosheets toward giant anisotropic Raman and piezoresistance responses. Appl. Phys. Lett., 2021, 119(20): 201903
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1376-1 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1376-1.

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2021YFA1200804), the National Natural Science Foundation of China (Grant Nos. 62274175, T2325025, and 61927813), Jiangsu Province Key R&D Program (Nos. BE2023009-5 and BE2021007-3), and the open Foundation of Key Laboratory of Nanodevices of Jiangsu Province (No. ZS2301). J. Wang acknowledges the support from the CAS Young Talent program under Grant No. E3291305. The authors are grateful for the technical support for the Vacuum Interconnected Nanotech Workstation (Nano-X) from Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(6319 KB)

Accesses

Citations

Detail

Sections
Recommended

/