Hyaluronic acid has been extensively investigated due to intrinsic properties of natural origin and strong ability to bind ions in water. Hyaluronic acid is an excellent crystal modifier because its abundant negatively charged carboxyl groups can bind the cations protruding from the crystal lattice. In this review, we mainly present the latest work focus on the role of hyaluronic acid in controlling the crystallization, breaking the symmetry of crystal, and the surface funtionalization of nanocrystals.
This paper investigated the effects of five kinds of Au surfaces terminated with and without functional groups on the crystallization of ferric oxides/oxyhydroxides in the suspension condition. Self-assembled monolayers (SAMs) were used to create hydroxyl (--OH), carboxyl (--COOH), amine (--NH2) and methyl (--CH3) functionalized surfaces, which proved to be of the same surface density. The immersion time of substrates in the Fe(OH)3 suspension was divided into two time portions. During the first period of 2 h, few ferric oxide/oxyhydroxide was deposited except that ?-Fe2O3 was detected on--NH2 surface. Crystallization for 10 h evidenced more kinds of iron compounds on the functional surfaces. Goethite and maghemite were noticed on four functional surfaces, and maghemite also grew on Au surface. Deposition of ?-Fe2O3 was found on--OH surface, while the growth of orthorhombic and hexagon FeOOH were indicated on--NH2 surface. Considering the wide existence of iron compounds in nature, our investigation is a precedent work to the study of iron biomineralization in the suspension area.
A serials of La1--
(1--
An economical route for the scalable production of carbon nanofibers (CNFs) on a sodium chloride support has been developed. CNFs have been synthesized by chemical vapor deposition (CVD) method by using metal formate as catalyst precursors at 680°C. Products were characterized by SEM, TEM, Raman spectroscopy and XRD method. By thermal analysis, the purity of the as grown products and purified products were determined. This method avoids calcination and reduction process which was employed in commercial catalysts such as metal oxide or nitrate. The problems such as detrimental effect, environmental and even cost have been overcome by using sodium chloride as support. The yield of CNFs up to 7800 wt.% relative to the nickel catalyst has been achieved in the growth time of 15 min. The advantage of this synthesis technique is the simplicity and use of easily available low cost precursors.
The goal of this study is to design and synthesize a linear segmented shape memory poly(urethane-urea) (SMPUU) that possesses near-body-temperature shape memory temperature (
With ultrasonic assistant mixing way, an intercalated mixture of polyol/organo reactive montmorillonite (ORMMT) was pretreated. The prepolymer composed MMT clay was prepared by reaction of polyol/ORMMT mixture with toluene diisocyanate (TDI). The resultant prepolymer reacted with extender (DMTDA) and then the polyurethane--urea/organo reactive montmorillonite (PUU/ORMMT) nanocomposites were obtained. The structure, morphology and properties of PUU/ORMMT nanocomposites were characterized by FT-IR, TEM, AFM, strain-stress machine, TGA, and dynamic mechanical analysis (DMA). The results showed that when the OMMT content is 3%, the PUU/ORMMT nanocomposities performed super mechanical properties. Because of the presence of ORMMT, both
Adjacency crosslinked polyurethane--urea (PUU) elastomers with different crosslinking density were prepared by using hydroxyl-terminated liquid butadiene-nitrile (HTBN), toluene diisocyanate (TDI) and chain extender 3,5-dimethyl thio-toluene diamine (DMTDA) as raw materials, dicumyl peroxide (DCP) as initiator, and N,N'-m-phenylene dimaleimide (HVA-2) as the crosslinking agent. The influences of the crosslinking density and temperature on the structure and properties of such elastomers were investigated. The crosslinking density of PUU elastomer was tested by the NMR method. It is found that when the content of HVA-2 is 1.5%, the mechanical properties of polyurethane elastomer achieve optimal performance. By testing thermal performance of PUU, compared with linear PUU, the thermal stability of the elastomers has a marked improvement. With the addition of HVA-2, the loss factor tan
In this paper effects of various injection molding parameters on tribological properties of ultra-high molecular weight polyethylene (UHMWPE) were investigated. The tribological properties like coefficient of friction and wear rate were obtained from the experimental results of hip simulator which was designed and fabricated in the laboratory. Bovine serum was used as a lubricant in this study. In addition, the hardness of the specimen was also investigated as well. The injection molding parameters that varied for this study are melt temperature, injection velocity and compaction time. The results show that contact loads and melt temperature were mostly influenced the tribological behavior of UHMWPE. A wear mechanism map was developed to study the dominant wear mechanism that influences the wear behavior of UHMWPE. SEM was employed to study the worn out morphologies of UHMWPE. The dominant wear mechanisms that are dominated through our study are ironing, scratching, ploughing, plastic deformation, and fatigue wear.