Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine

Xiao-Yan ZHANG, Yu-Fei MA, Yong-Gang LI, Pin-Pin WANG, Yuan-Liang WANG, Yan-Feng LUO()

PDF(457 KB)
PDF(457 KB)
Front. Mater. Sci. ›› 2012, Vol. 6 ›› Issue (4) : 326-337. DOI: 10.1007/s11706-012-0181-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine

  • Xiao-Yan ZHANG, Yu-Fei MA, Yong-Gang LI, Pin-Pin WANG, Yuan-Liang WANG, Yan-Feng LUO()
Author information +
History +

Abstract

The goal of this study is to design and synthesize a linear segmented shape memory poly(urethane-urea) (SMPUU) that possesses near-body-temperature shape memory temperature (Ttran) and enhanced mechanical properties by incorporating flexible poly(ethylene glycol) 400 (PEG400) to form poly(D,L-lactic acid)-based macrodiols (PDLLA--PEG400--PDLLA) and then rigid piperazine (PPZ) as a chain extender to form the desired SMPUUs (PEG400--PUU--PPZ). PEG400 increased Mn while maintaining a lower Tg of PDLLA--PEG400--PDLLA, which together with PPZ improved the mechanical properties of PEG400--PUU--PPZ. The obtained optimum SMPUU with enhanced mechanical properties (σy = 24.28 MPa; ?f = 698%; Uf = 181.5 MJ/m3) and a Tg of 40.62°C exhibited sound shape memory properties as well, suggesting a promising SMPUU for in vivo biomedical applications.

Keywords

poly(urethane-urea) / poly(D / L-lactic acid) / poly(ethylene glycol) / piperazine / shape memory property / mechanical property

Cite this article

Download citation ▾
Xiao-Yan ZHANG, Yu-Fei MA, Yong-Gang LI, Pin-Pin WANG, Yuan-Liang WANG, Yan-Feng LUO. Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine. Front Mater Sci, 2012, 6(4): 326‒337 https://doi.org/10.1007/s11706-012-0181-5

References

[1] Ma Z, Hong Y, Nelson D M, . Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules , 2011, 12(9): 3265-3274
[2] Wang Y L, Li Y G, Luo Y F, . Synthesis and characterization of a novel biodegradable thermoplastic shape memory polymer. Materials Letters , 2009, 63(3-4): 347-349
[3] Chun B C, Cho T K, Chung Y C. Enhanced mechanical and shape memory properties of polyurethane block copolymers chain-extended by ethylene diamine. European Polymer Journal , 2006, 42(12): 3367-3373
[4] Mondal S, Hu J L. Polyurethanes: Influence of PEG 3400 studies of shape memory property on thermoplastic segmented polyurethanes: Influence of PEG 3400. Journal Elastomers and Plastics , 2007, 39(1): 81-91
[5] Bower D I. An Introduction to Polymer Physics. 1st ed. Cambridge: Cambridge University Press, 2002, 235-238
[6] Lendlein A. Shape memory polymers. In: Advances in Polymer Science . Berlin Heidelberg: Springer-Verlag, 2010, 226: 6-9
[7] Wang W S, Ping P, Chen X S, . Biodegradable polyurethane based on random copolymer of L-lactide and ?-caprolactone and its shape-memory property. Journal of Applied Polymer Science , 2007, 104(6): 4182-4187
[8] Yang J H, Chun B C, Chung Y C, . Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer , 2003, 44(11): 3251-3258
[9] Król P, Król B. Surface free energy of polyurethane coatings with improved hydrophobicity. Colloid & Polymer Science , 2012, 290(10): 879-893
[10] Zhang C Y, Luo Y F, Wang S J, . Design, synthesis and characterization of novel biodegradable macrodiols based on poly(DL-lactic acid) and poly(p-dioxanone). Chinese Chemical Letters , 2009, 20(6): 743-746
[11] Luo Y F, Huang M N, Wang S J, . Design, synthesis and characterization of novel poly(urethane-urea) based on a macrodiol from poly(lactic acid) and poly(p-dioxanone). Chinese Chemical Letters , 2011, 22(2): 237-240
[12] Li X H, Deng X M, Yuan M L, . In vitro degradation and release pro?les of poly-DL-lactide-poly(ethylene glycol) microspheres with entrapped proteins. Journal of Applied Polymer Science , 2000, 78(1): 140-148
[13] Ruan G, Feng S-S. Preparation and characterization of poly(lactic acid)–poly(ethylene glycol)–poly(lactic acid) (PLA–PEG–PLA) microspheres for controlled release of paclitaxel. Biomaterials , 2003, 24(27): 5037-5044
[14] Zhang J-Y, Beckman E J, Hu J, . Synthesis, biodegradability, and biocompatibility of lysine diisocyanate–glucose polymers. Tissue Engineering , 2002, 8(5): 771-785
[15] Szycher M. Biostability of polyurethane elastomers: a critical review. Journal of Biomaterials Applications , 1988, 3(2): 297-402
[16] Zheng X T, Zhou S B, Li X H, . Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials , 2006, 27(24): 4288-4295
[17] Ruan C S, Wang Y L, Zhang M L, . Design, synthesis and characterization of novel biodegradable shape memory polymers based on poly(D,L-lactic acid) diol, hexamethylene diisocyanate and piperazine. Polymer International , 2012, 61(4): 524-530
[18] Niu X F, Feng Q L, Wang M B, . Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. Journal of Controlled Release , 2009, 134(2): 111-117
[19] Bayraktar H H, Morgan E F, Niebur G L, . Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics , 2004, 37(1): 27-35
[20] Du Y J, Lemstra P J, Nijenhuis A J, . ABA type copolymers of lactide with poly(ethylene glycol), kinetic, mechanistic, and model studies. Macromolecules , 1995, 28(7): 2124-2132
[21] Rashkov I, Manolova N, Li S, . Synthesis characterization, and hydrolytic degradation of PLA-PEO-PLA tri-block copolymers with short poly(L-lactic acid) chains. Macromolecules , 1996, 29(1): 50-62
[22] Nijenhuis A J, Colstee E, Grijpma D W, . High molecular weight poly (L-lactide) and poly (ethylene oxide) blends: thermal characterization and physical properties. Polymer , 1996, 37(26): 5849-5857
[23] Sheth M, Kumar R A, Dave V, . Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). Journal of Applied Polymer Science , 1997, 66(8): 1495-1505
[24] Yamamoto T, Furukawa H. Relationship between molecular structure and deformation-fracture mechanism of amorphous polymers: 1 Shear yield stress. Polymer , 1995, 36(12): 2389-2392
AI Summary AI Mindmap
PDF(457 KB)

Accesses

Citations

Detail

Sections
Recommended

/