Journal home Browse Latest articles

Latest articles

  • Select all
  • RESEARCH ARTICLE
    Dandan Hu, Linxiu Sui, Jinjin Shi, Dongfeng Li, Yuxuan Zhang, Yimeng Li, Bingbing Hu, Xiaoya Yuan
    Frontiers of Materials Science, 2024, 18(2): 240687. https://doi.org/10.1007/s11706-024-0687-7

    In this work, C@Fe3O4 composites were prepared through a typical template method with emulsified asphalt as carbon source, ammonium ferric citrate as transition metal oxide precursor, and NaCl as template. As an anode for lithium-ion batteries, the optimized C@Fe3O4-1:2 composite exhibits an excellent reversible capacity of 856.6 mA·h·g−1 after 100 cycles at 0.1 A·g−1 and a high capacity of 531.1 mA·h·g−1 after 300 cycles at 1 A·g−1, much better than those of bulk carbon/Fe3O4 prepared without NaCl. Such remarkable cycling performance mainly benefits from its well-designed structure: Fe3O4 nanoparticles generated from ammonium ferric citrate during pyrolysis are homogenously encapsulated in graphitized and in-plane porous carbon nanocages derived from petroleum asphalt. The carbon nanocages not only improve the conductivity of Fe3O4, but also suppress the volume expansion of Fe3O4 effectively during the charge‒discharge cycle, thus delivering a robust electrochemical stability. This work realizes the high value-added utilization of low-cost petroleum asphalt, and can be extended to application of other transition-metal oxides-based anodes.

  • RESEARCH ARTICLE
    Mingjun Pang, Zhaoyang Song, Miaomiao Mao, Shang Jiang, Ruxia Zhang, Runwei Wang, Jianguo Zhao
    Frontiers of Materials Science, 2024, 18(2): 240688. https://doi.org/10.1007/s11706-024-0688-6

    In situ carbon-coated Co3Se4/CoSe2 (CoxSey) nanoparticles (NPs) attached on three-dimensional (3D) reduced graphene oxide (rGO) sheets were skillfully developed in this work, which involved the environment-friendly hydrothermal method, freeze drying, and selenide calcination. Within the structure, the glucose-derived carbon layer exhibited significantly homogeneous dispersion under an argon environment. This structure not only has enhanced stability, but also can effectively mitigate the volume swell of CoxSey particles. The resulted Co3Se4/CoSe2@C/rGO (CSe@C/rGO) exhibited a specific surface area (SSA) of 240.9 m2·g−1, offering more electrochemically active sites for the storage of energy related to lithium ions. The rGO matrix held exceptional flexibility and functional structural rigidity, facilitating the swift ion intercalation and ensuring the high conductivity and recyclability of the structure. When applied to anodes designed for lithium-ion batteries (LIBs), this material demonstrated distinguished rate and ultra-high reversible capacity (872.98 mA·h·g−1 at 0.5 A·g−1). Meanwhile, its capacity retention reached 119.5% after 500 cycles at 2 A·g−1, with a coulombic efficiency of 100%. This work potentially paves the way for generating fast and powerful metal selenide anodes and initiating LIBs with good performance.

  • RESEARCH ARTICLE
    Jie Meng, Hongmei Liu, Sainan Zhang, Baogui Ye, Min Feng, Daoai Wang
    Frontiers of Materials Science, 2024, 18(2): 240686. https://doi.org/10.1007/s11706-024-0686-8

    The solar-to-hydrogen conversion using the photoelectrochemical (PEC) method is a practical approach to producing clean energy. However, it relies on the availability of photocatalyst materials. In this work, a novel photocatalyst comprising molybdenum telluride quantum dots (MoTe2 QDs)-modified titanium dioxide nanorods (TiO2 NRs) was prepared for the enhancement of the PEC water splitting performance after combination with a Al2O3 layer using the atomic layer deposition (ALD) technique. MoTe2 QDs were initially prepared, and then they were loaded onto TiO2 NRs using a warm water bath-based heating method. After a layer of Al2O3 was deposited onto resulted TiO2 NRs/MoTe2 QDs, the composite TiO2 NRs/MoTe2 QDs/Al2O3 was finally obtained. Under simulated sunlight (100 mW·cm−2), such a composite exhibited a maximum photocurrent density of 2.25 mA·cm−2 at 1.23 V (versus RHE) and an incident photon-to-electron conversion efficiency of 69.88% at 380 nm, which are 4.33 and 6.66 times those of pure TiO2 NRs, respectively. Therefore, the composite photocatalyst fabricated in this work may have promising application in the field of PEC water splitting, solar cells and other photocatalytic devices.

  • RESEARCH ARTICLE
    Junhai Wang, Huaqiu Huang, Chen Chen, Jiandong Zheng, Yaxian Cao, Sang Woo Joo, Jiarui Huang
    Frontiers of Materials Science, 2024, 18(2): 240683. https://doi.org/10.1007/s11706-024-0683-y

    There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO)2FeBO3 nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO)2FeBO3 can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g−1, the initial discharging and charging specific capacities of the (FeO)2FeBO3@NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g−1, respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g−1, displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO)2FeBO3 NPs is conducive to the performance improvement of Li–S batteries.

  • RESEARCH ARTICLE
    Xinghua Liang, Pengcheng Shen, Lingxiao Lan, Yunmei Qin, Ge Yan, Meihong Huang, Xuanan Lu, Qiankun Hun, Yujiang Wang, Jixuan Wang
    Frontiers of Materials Science, 2024, 18(2): 240685. https://doi.org/10.1007/s11706-024-0685-9

    Electrolyte interface resistance and low ionic conductivity are essential issues for commercializing solid-state lithium metal batteries (SSLMBs). This work details the fabrication of a double-layer solid composite electrolyte (DLSCE) for SSLMBs. The composite comprises poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF‒HFP) and poly(methyl methacrylate) (PMMA) combined with 10 wt.% of Li6.4La3Zr1.4Ta0.6O12 (LLZTO), synthesized through an ultraviolet curing process. The ionic conductivity of the DLSCE (2.6 × 10−4 S·cm−1) at room temperature is the high lithium-ion transference number (0.57), and the tensile strength is 17.8 MPa. When this DLSCE was assembled, the resulted LFP/DLSCE/Li battery exhibited excellent rate performance, with the discharge specific capacities of 162.4, 146.9, 93.6, and 64.0 mA·h·g−1 at 0.1, 0.2, 0.5, and 1 C, respectively. Furthermore, the DLSCE demonstrates remarkable stability with lithium metal batteries, facilitating the stable operation of a Li/Li symmetric battery for over 200 h at both 0.1 and 0.2 mA·cm−2. Notably, the formation of lithium dendrites is also effectively inhibited during cycling. This work provides a novel design strategy and preparation method for solid composite electrolytes.

  • REVIEW ARTICLE
    Chaiqiong Guo, Xuhong He, Xuanyu Liu, Yuhui Wang, Yan Wei, Ziwei Liang, Di Huang
    Frontiers of Materials Science, 2024, 18(2): 240689. https://doi.org/10.1007/s11706-024-0689-5

    Black phosphorus (BP), a novel two-dimensional material, exhibits remarkable photoelectric characteristics, ultrahigh photothermal conversion efficiency, substantial specific surface area, high carrier mobility, and tunable band gap properties. These attributes have positioned it as a promising candidate in domains such as energy, medicine, and the environment. Nonetheless, its vulnerability to light, oxygen, and water can lead to rapid degradation and loss of crystallinity, thereby limiting its synthesis, preservation, and application. Moreover, BP has demonstrated cytotoxic tendencies, substantially constraining its viability in the realm of biomedicine. Consequently, the imperative for surface modification arises to bolster its stability and biocompatibility, while concurrently expanding its utility spectrum. Biological macromolecules, integral components of living organisms, proffer innate advantages over chemical agents and polymers for the purpose of the BP modifications. This review comprehensively surveys the advancements in utilizing biological macromolecules for the modifications of BP. In doing so, it aims to pave the way for enhanced stability, biocompatibility, and diversified applications of this material.

  • RESEARCH ARTICLE
    Huaying Hao, Lihong Sun, Jiaxuan Chen, Jun Liang
    Frontiers of Materials Science, 2024, 18(2): 240682. https://doi.org/10.1007/s11706-024-0682-z

    The in vitro expansion of stem cells is important for their application in different life science fields such as cellular tissue and organ repair. An objective of this paper was to achieve static cell culture in vitro through peptide hydrogel-supported microspheres (MSs). The peptides, with their gel-forming properties, microstructures, and mechanical strengths characterized, were found to have good support for the MSs and to be injectable. The internal structures of poly(L-lactic acid) microspheres (PLLA-MSs) and polystyrene microspheres (PS-MSs) made in the laboratory were observed and statistically analyzed in terms of particle size and pore size, following which the co-cultured MSs with cells were found to have good cell adhesion. In addition, three-dimensional (3D) culturing of cells was performed on the peptide and microcarrier composite scaffolds to measure cell viability and cell proliferation. The results showed that the peptides could be stimulated by the culture medium to self-assembly form a 3D fiber network structure. Under the peptide-MS composite scaffold-based cell culture system, further enhancement of the cell culture effect was measured. The peptide-MS composite scaffolds have great potential for the application in 3D cell culture and in vitro cell expansion.

  • REVIEW ARTICLE
    Yifan Liu, Guilu Qin, Liangjun Yin, Xian Jian, Xianglong Li
    Frontiers of Materials Science, 2024, 18(2): 240679. https://doi.org/10.1007/s11706-024-0679-7

    Size effects and compositions constitute new properties for inorganic particles in different application fields. The physical method has recently attracted more attention in the preparation of inorganic materials. Herein, a low-cost, eco-friendly, simple-operating, and time-saving technique, named electrical discharge, is reviewed in relation to developments from the nature of this technique in different dielectric media to the practical experience in controlling the main processing parameters, apparatuses, types of discharge, from the various structures and components to the wide applications. The development of the electrical discharge technique will play an important role in improving the technology to prepare superfine inorganic particles with high purity. Meanwhile, electrical discharge contributes to easily mixing solid materials from the atomic scale to several micrometers with different structures. Moreover, metal oxides or doping materials are accessible as the dielectric medium is changed. Considering some excellent advantages, new inorganic particles exploited through the electrical discharge method will promise to be the most rewarding in some potential applications.

  • RESEARCH ARTICLE
    Tianyong Mao, Jing Dai, Meiqing Xin, Deliang Zeng, Zhipeng Xie
    Frontiers of Materials Science, 2024, 18(1): 240681. https://doi.org/10.1007/s11706-024-0681-0

    Zinc-based flow battery is an energy storage technology with good application prospects because of its advantages of abundant raw materials, low cost, and environmental friendliness. The chemical stability of zinc electrodes exposed to electrolyte is a very important issue for zinc-based batteries. This paper reports on details of chemical stability of the zinc metal exposed to a series of solutions, as well as the relationship between the morphological evolution of zinc electrodes and their properties in an alkaline medium. Chemical corrosion of zinc electrodes by the electrolyte will change their surface morphology. However, we observed that chemical corrosion is not the main contributor to the evolution of zinc electrode surface morphology, but the main contributor is the Zn/Zn2+ electrode process. The morphological evolution of zinc electrodes was controlled by using ionic liquids, 1-ethyl-3-methylimidazolium acetate (EMIA), and 1-propylsulfonic-3-methylimidazolium tosylate (PSMIT), and the electrode performance was recorded during the morphological evolution process. It was observed that the reversible change of zinc electrode morphology was accompanied by better electrode performance.

  • RESEARCH ARTICLE
    Jie Wan, Gang Wang, Haibo Ren, Jiarui Huang, Sang Woo Joo
    Frontiers of Materials Science, 2024, 18(1): 240677. https://doi.org/10.1007/s11706-024-0677-9

    Porous flower-like SnO2/CdSnO3 microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination, and the sensing performance was measured when a gas sensor, based on such microstructures, was exposed to various volatile organic compound (VOC) gases. The response value was found to reach as high as 100.1 when the SnO2/CdSnO3 sensor was used to detect 100 ppm formaldehyde gas, much larger than those of other tested VOC gases, indicating the high gas sensitivity possessed by this sensor especially in the detection of formaldehyde gas. Meanwhile, the response/recovery process was fast with the response time and recovery time of only 13 and 21 s, respectively. The excellent gas sensing performance derive from the advantages of SnO2/CdSnO3, such as abundant n–n heterojunctions built at the interface, high available specific surface area, abundant porosity, large pore size, and rich reactive oxygen species, as well as joint effects arising from SnO2 and CdSnO3, suggesting that such porous flower-like SnO2/CdSnO3 microstructures composed of nanosheets have a high potential for developing gas sensors.

  • RESEARCH ARTICLE
    C. M. Vidhya, Yogita Maithani, Sakshi Kapoor, J. P. Singh
    Frontiers of Materials Science, 2024, 18(1): 240680. https://doi.org/10.1007/s11706-024-0680-1

    This paper describes how to produce a wearable dry electrode at a reasonable cost and how to use it for the monitoring of biopotentials in electrocardiography. Smart textiles in wearable technologies have made a great advancement in the health care management and living standards of humans. Graphene was manufactured using the low-cost single-step process, laser ablation of polyimide, a commercial polymer. Graphene dispersions were made using solvent isopropyl alcohol which has low boiling point, nontoxicity, and environmental friendliness. After successive coating of the graphene dispersion on the cotton fabric to make it conductive, the sheet resistance of the resulting fabric dropped to 3% of its initial value. The laser-induced graphene (LIG) cotton dry electrodes thus manufactured are comparable to Ag/AgCl wet electrodes in terms of the skin-to-electrode impedance, measuring between 78.0 and 7.2 kΩ for the frequency between 40 Hz and 1 kHz. The LIG cotton electrode displayed a signal-to-noise ratio of 20.17 dB. Due to its comfort, simplicity, and good performance over a longer period of time, the textile electrode appears suited for medical applications.

  • RESEARCH ARTICLE
    Haorui Liu, Jikai Yang, Decai Nie, Chunlei Liu, Liumenghan Zheng, Yining Mu, Weijun Chen
    Frontiers of Materials Science, 2024, 18(1): 240674. https://doi.org/10.1007/s11706-024-0674-z

    The choice of cathode and anode materials for electrochromic devices plays a key role in the performance of electrochromic smart windows. In this research, WO3/Ag and TiO2/NiO composite thin films were separately prepared by the hydrothermal method combined with electrodeposition. The electrochromic properties of the single WO3 thin film were optimized, and TiO2/NiO composite films showed better electrochromic performance than that of the single NiO film. WO3/Ag and TiO2/NiO composite films with excellent electrochromic properties were respectively chosen as the cathode and the anode to construct a WO3/Ag‒TiO2/NiO electrochromic device. The response time (tc = 4.08 s, tb = 1.08 s), optical modulation range (35.91%), and coloration efficiency (30.37 cm2·C−1) of this electrochromic device are better than those of WO3‒NiO and WO3/Ag‒NiO electrochromic devices. This work provides a novel research idea for the performance enhancement of electrochromic smart windows.

  • RESEARCH ARTICLE
    Hang Zhang, Shu Cai, Huanlin Zhang, Lei Ling, You Zuo, Hao Tian, Tengfei Meng, Guohua Xu, Xiaogang Bao, Mintao Xue
    Frontiers of Materials Science, 2024, 18(1): 240678. https://doi.org/10.1007/s11706-024-0678-8

    The coating-modified magnesium (Mg) alloys exhibit controllable corrosion resistance, but the insufficient antibacterial performance limits their clinical applications as degradable implants. Superhydrophobic coatings show excellent performance in terms of both corrosion resistance and inhibition of bacterial adhesion and growth. In this work, a hydroxyapatite (HA)/palmitic acid (PA) superhydrophobic composite coating was fabricated on the Mg alloy by the hydrothermal technique and immersion treatment. The HA/PA composite coating showed superhydrophobicity with a contact angle of 153° and a sliding angle of 2°. The coated Mg alloy exhibited excellent corrosion resistance in the simulated body fluid, with high polarization resistance (77.10 kΩ·cm2) and low corrosion current density ((0.491 ± 0.015) μA·cm−2). Meanwhile, the antibacterial efficiency of the composite coating was over 98% against E. coli and S. aureus in different periods. The results indicate that the construction of such superhydrophobic composite coating (HA/PA) on the Mg alloy can greatly improve the corrosion resistance of Mg alloy implants within the human body and avoid bacterial infection during the initial stages of implantation.

  • RESEARCH ARTICLE
    Qi Zhang, Chongyang Liu, Xuehong Wu, Xueling Zhang, Jun Song
    Frontiers of Materials Science, 2024, 18(1): 240672. https://doi.org/10.1007/s11706-024-0672-1

    The biggest challenge for organic phase change materials (PCMs) used in cold energy storage is to maintain high heat storage capacity while reducing the leakage risk of PCMs during the phase transition process. This is crucial for expanding their applications in the more demanding cold storage field. In this study, novel form-stable low-temperature composite PCMs are prepared with mesoporous materials, namely SBA-15 and CMK-3 (which are prepared using the template method), as supporting matrices and dodecane as the PCM. Owing to the combined effects of capillary forces within mesoporous materials and interactions among dodecane molecules, both dodecane/SBA-15 and dodecane/CMK-3 exhibit outstanding shape stability and thermal cycling stability even after 200 heating/cooling cycles. In comparison to those of dodecane/SBA-15, dodecane/CMK-3 exhibits superior cold storage performance and higher thermal conductivity. Specifically, the phase transition temperature of dodecane/CMK-3 is −8.81 °C with a latent heat of 122.4 J·g−1. Additionally, it has a thermal conductivity of 1.21 W·m−1·K−1, which is 9.45 times that of dodecane alone. All these highlight its significant potential for applications in the area of cold energy storage.

  • RESEARCH ARTICLE
    Wei Xiao, Wei Yang, Shantang Liu
    Frontiers of Materials Science, 2024, 18(1): 240676. https://doi.org/10.1007/s11706-024-0676-x

    Metal–organic frameworks (MOFs) have attracted widespread attention due to their regular structures, multiple material centers, and various ligands. They are always considered as one kind of ideal templates for developing highly sensitive and selective gas sensors. In this study, the advantages of MOFs with the high specific surface area (71.9891 m2·g−1) and uniform morphology were fully utilized, and urchin-like SnO2 nanowires were obtained by the hydrothermal method followed by the calcination using Sn-MOFs consisting of the ligand of C9H6O6 (H3BTC) and Sn/Ce center ions as sacrificial templates. This unique urchin-like nanowire structure facilitated gas diffusion and adsorption, resulting in superior gas sensitivity. A series of Ce-doped SnO2 nanowires with different doping ratios were synthesized, and their gas sensing properties towards formaldehyde were studied. The resulted Ce-SnO2 was revealed to have high sensitivity (201.2 at 250 °C), rapid response (4 s), long-term stability, and good repeatability for formaldehyde sensing, and the gas sensing mechanism of Ce-SnO2 exposed to formaldehyde was also systematically discussed.