[1] Ropes M W, Robertson W V B, Rossmeisl E C,
. Synovial fluid mucin.
Acta Medica Scandinavica , 1947, 128(s196): 700–744
[2] Meyer K, Smyth E M, Dawson M H. The isolation of a mucopolysaccharide form synovial fluid.
Journal of Biological Chemistry , 1939, 128: 319–327
[3] Meyer K, Palmer J W. The polysaccharide of the vitreous humour.
Journal of Biological Chemistry , 1934, 107: 629–634
[4] Ropes M W, Bauer W. Synovial Fluid Changes in Joint Disease.
Canbridge MA:
Harvard University Press, 1953
[5] Sunblad L. Studies on hyaluronic acid in synovial fluids.
Acta Societatis Medicorum Upsaliensis , 1953, 58(3–4): 113–238
[6] Sundblad L. Glycosaminoglycans and glycoproteins in synovial fluid. In: Balazs E A, Jeanloz R W, eds.
The Amino Sugars .
New York,
London: Academic Press, 1964, 229–250
[7] Coleman P J, Scott D, Mason R M,
. Characterization of the effect of high molecular weight hyaluronan on trans-synovial flow in rabbit knees.
The Journal of Physiology , 1999, 514(1): 265–282
[8] Blumberg B S, Ogston A G. Physicochemical studies on hyaluronic acid. In:
Chemistry and Biology Mucopolysaccha-rides (Ciba Foundation Symposium ).
London:
Churchill, 1953, 22–37
[9] Balazs E A. Physical chemistry of hyaluronic acid.
Federation Proceedings , 1958, 17(4): 1086–1093
[10] Almond A, Sheehan J K, Brass A. Molecular dynamics simulations of the two disaccharides of hyaluronan in aqueous solution.
Glycobiology , 1997, 7(5): 597–604
[11] Almond A, Brass A, Sheehan J K. Dynamic exchange between stabilized conformations predicted for hyaluronan tetrasacchari-des: comparison of molecular dynamics simulations with available NMR data.
Glycobiology , 1998, 8(10): 973–980
[12] Almond A, Brass A, Sheehan J K. Oligosaccharides as model systems for understanding water-biopolymer interaction: hydrated dynamics of a hyaluronan decamer.
Journal of Physical Chemistry B , 2000, 104(23): 5634–5640
[13] Almond A, Brass A, Sheehan J K. Deducing polymeric structure from aqueous molecular dynamics simulations of oligosaccha-rides: predictions from simulations of hyaluronan tetrasaccha-rides compared with hydrodynamic and X-ray fibre diffraction data.
Journal of Molecular Biology , 1998, 284(5): 1425–1437
[14] Toole B P. Hyaluronan: from extracellular glue to pericellular cue.
Nature Reviews Cancer , 2004, 4(7): 528–539
[15] Sutherland I W. Novel and established applications of microbial polysaccharides.
Trends in Biotechnology , 1998, 16(1): 41–46
[16] Morimoto K, Yamaguchi H, Iwakura Y,
. Effects of viscous hyaluronate-sodium solutions on the nasal absorption of vasopressin and an analogue.
Pharmaceutical Research , 1991, 8(4): 471–474
[17] Luo Y, Ziebell M R, Prestwich G D. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells.
Biomacromolecules , 2000, 1(2): 208–218
[18] Adams M E. Viscosupplementation: a treatment for osteoarthritis.
Journal of Rheumatology , 1993, 20(s39): 1–24
[19] Han S Y, Han H S, Lee S C,
. Mineralized hyaluronic acid nanoparticles as a robust drug carrier.
Journal of Materials Chemistry , 2011, 21(22): 7996–8001
[20] Chen Z H, Zhou H H, Wang X L,
. Controlled mineralization by extracellular matrix: monodisperse, colloidally stable calcium phosphate-hyaluronan hybrid nanospheres.
Chemical Communications , 2010, 46(8): 1278–1280
[21] Chen Z H, Wang C H, Zhou H H,
. Biomimetic crystallization of toplike calcite single crystals with an extensive (00.1) face in the presence of sodium hyaluronate.
Crystal Growth & Design , 2010, 10(11): 4722–4727
[22] Chen Z H, Wang C H, Zhou H H,
. Modulation of calcium oxalate crystallization by commonly consumed green tea.
CrystEngComm , 2010, 12(3): 845–852
[23] Hou S, Xu Q, Tian W,
. The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin.
Journal of Neuroscience Methods , 2005, 148(1): 60–70
[24] Ren Y J, Zhou Z Y, Cui F Z,
. Hyaluronic acid/polylysine hydrogel as a transfer system for transplantation of neural stem cells.
Journal of Bioactive and Compatible Polymers , 2009, 24(1): 56–62
[25] Hardingham T E, Muir H. The specific interaction of hyaluronic acid with cartillage proteoglycans.
Biochimica et Biophysica Acta , 1972, 279(2): 401–405
[26] Huang L, Cheng Y Y, Koo P L,
. The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures.
Journal of Biomedical Materials Research Part A , 2003, 66A(4): 880–884
[27] Fraser J R E, Laurent T C, Laurent U B G. Hyaluronan: its nature, distribution, functions and turnover.
Journal of Internal Medicine , 1997, 242(1): 27–33
[28] Laurent T C, Fraser J R. Hyaluronan.
FASEB Journal , 1992, 6(7): 2397–2404
[29] Lowenstam H A, Weiner S. On Biomineralization.
Oxford:
Oxford University Press, 1989, 324
[30] Mann S, Webb J, Williams R J P. Biomineralization.
Weinheim:
VCH, 1989, 490
[31] Simkiss K, Wilbur K M. Biomineralization.
San Diego, CA:
Academic Press, 1989, 337
[32] Baeuerlein E. Biomineralization.
Weinheim:
Wiley-VCH, 2000, 294
[33] Mann S. Biomineralization.
Oxford:
Oxford University Press, 2001, 198
[34] Baeuerlein E. Handbook of Biomineralization.
Biological Aspects and Structure Formation .
Weinheim:
Wiley-VCH, 2007, 440
[35] Arias J L, Fernandez M S. Biomineralization: From Paleontology to Materials Science.
Santiago, Chile:
Editorial Universitaria, 2007, 534
[36] Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates.
Angewandte Chemie International Edition , 2002, 41(17): 3130–3146
[37] LeGeros R Z. In: Brown P W, Constantz B, eds. Hydroxyapatite and Related Materials.
Boca Raton, FL:
CRC, 1994, 3–28
[38] Rueger J M. Bone substitution materials. Current status and prospects.
Der Orthopade , 1998, 27(2): 72–79
[39] LeGeros R Z, LeGeros J P. In: Schnettler R, Markgraf E, eds.
Knochenersatzmaterialien und wachstumsfaktoren .
Stuttgart:
Thieme, 1997, 180 (in German)
[40] Choi J S, K?ller M, Müller D,
. Verbesserung der biokompatibilit?t von Ni-Ti-Formged?chtnislegierungen (“Nitinol”) durch beschichtung mit calciumphosphaten aus l?sung.
Biomedizinische Technik , 2001, 46(s1): 226–227 (in German)
[41] Ambard A J, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties.
Journal of Prosthodontics , 2006, 15(5): 321–328
[42] Saha S, Pal S. Mechanical properties of bone cement: a review.
Journal of Biomedical Materials Research , 1984, 18(4): 435–462
[43] Gisep A, Wieling R, Bohner M,
. Resorption patterns of calcium-phosphate cements in bone.
Journal of Biomedical Materials Research Part A , 2003, 66A(3): 532–540
[44] Morejón-Alonso L, Ferreira O J B, Carrodeguas R G,
. Bioactive composite bone cement based on α-tricalcium phosphate/tricalcium silicate.
Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2012, 100B(1): 94–102
[45] Brunner T J, Grass R N, Bohner M,
. Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction.
Journal of Materials Chemistry , 2007, 17(38): 4072–4078
[46] Henslee A M, Gwak D-H, Mikos A G,
. Development of a biodegradable bone cement for craniofacial applications.
Journal of Biomedical Materials Research Part A , 2012, 100A(9): 2252–2259
[47] James R, Deng M, Laurencin C T,
. Nanocomposites and bone regeneration.
Frontier of Materials Science , 2011, 5(4): 342–357
[48] Cui F Z, Wen H B, Su X W,
. Microstructures of external periosteal callus of repaired femoral fracture in children.
Journal of Structural Biology , 1996, 117(3): 204–208
[49] Zhang W, Liao S S, Cui F Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen.
Chemistry of Materials , 2003, 15(16): 3221–3226
[50] Zhang W, Huang Z L, Liao S S,
. Nucleation sites of calcium phosphate crystals during collagen mineralization.
Journal of the American Ceramic Society , 2003, 86(6): 1052–1054
[51] Cui F-Z, Li Y, Ge J. Self-assembly of mineralized collagen composites.
Materials Science and Engineering R: Reports , 2007, 57(1–6): 1–27
[52] Cai Y, Liu Y, Yan W,
. Role of hydroxyapatite nanoparticle size in bone cell proliferation.
Journal of Materials Chemistry , 2007, 17(36): 3780–3787
[53] Bako? D, Soldán M, Hernández-Fuentes I. Hydroxyapatite–collagen–hyaluronic acid composite.
Biomaterials , 1999, 20(2): 191–195
[54] Solchaga L A, Dennis J E, Goldberg V M,
. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage.
Journal of Orthopaedic Research , 1999, 17(2): 205–213
[55] Aebli N, Stich H, Schawalder P,
. Effects of bone morphogenetic protein-2 and hyaluronic acid on the osseointegration of hydroxyapatite-coated implants: an experimental study in sheep.
Journal of Biomedical Materials Research Part A , 2005, 73A(3): 295–302
[56] Yoshikawa M, Tsuji N, Toda T,
. Osteogenic effect of hyaluronic acid sodium salt in the pores of a hydroxyapatite scaffold.
Materials Science and Engineering C , 2007, 27(2): 220–226
[57] Ishikawa Y, Komotori J, Senna M. Properties of hydroxyapatite-hyaluronic acid nano-composite sol and its interaction with natural bones and collagen fibers.
Current Nanoscience , 2006, 2(3): 191–196
[58] Shen H, Tan J, Saltzman W M. Surface-mediated gene transfer from nanocomposites of controlled texture.
Nature Materials , 2004, 3(8): 569–574
[59] Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy.
Expert Review of Molecular Diagnostics , 2005, 5(6): 893–905
[60] Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells.
Angewandte Chemie International Edition , 2008, 47(8): 1382–1395
[61] Sokolova V V, Radtke I, Heumann R,
. Effective transfection of cells with multi-shell calcium phosphate–DNA nanoparticles.
Biomaterials , 2006, 27(16): 3147–3153
[62] Chowdhury E H, Kutsuzawa K, Akaike T. Designing smart nano-apatite composites: the emerging era of non-viral gene delivery.
Gene Therapy & Molecular Biology , 2005, 9: 301–315
[63] Sokolova V, Kovtun A, Prymak O,
. Functionalisation of calcium phosphate nanoparticles by oligonucleotides and their application for gene silencing.
Journal of Materials Chemistry , 2007, 17(8): 721–727
[64] Pedraza C E, Bassett D C, McKee M D,
. The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection.
Biomaterials , 2008, 29(23): 3384–3392
[65] Kakizawa Y, Miyata K, Furukawa S,
. Size-controlled formation of a calcium phosphate-based organic–inorganic hybrid vector for gene delivery using poly(ethylene glycol)-
block-poly(aspartic acid).
Advanced Materials , 2004, 16(8): 699–702
[66] Welzel T, Radtke I, Meyer-Zaika W,
. Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA.
Journal of Materials Chemistry , 2004, 14(14): 2213–2217
[67] Donners J J J M, Nolte R J M, Sommerdijk N A J M. Dendrimer-based hydroxyapatite composites with remarkable materials.
Advanced Materials , 2003, 15(4): 313–316
[68] Shkilnyy A, Friedrich A, Tiersch B,
. Poly(ethylene imine)-controlled calcium phosphate mineralization.
Langmuir , 2008, 24(5): 2102–2109
[69] Schmidt H T, Gray B L, Wingert P A,
. Assembly of aqueous-cored calcium phosphate nanoparticles for drug deli-very.
Chemistry of Materials , 2004, 16(24): 4942–4947
[70] Sauer M, Haefele T, Graff A,
. Ion-carrier controlled precipitation of calcium phosphate in giant ABA triblock copolymer vesicles.
Chemical Communications , 2001, 23(23): 2452–2453
[71] Sugawara A, Yamane S, Akiyoshi K. Nanogel-templated mineralization: polymer-calcium phosphate hybrid nanomaterials.
Macromolecular Rapid Communications , 2006, 27(6): 441–446
[72] Perkin K K, Turner J L, Wooley K L,
. Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages.
Nano Letters , 2005, 5(7): 1457–1461
[73] Ethirajan A, Ziener U, Chuvilin A,
. Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process.
Advanced Functional Materials , 2008, 18(15): 2221–2227
[74] Wang X, Zhuang J, Peng Q,
. Liquid-solid-solution synthesis of biomedical hydroxyapatite nanorods.
Advanced Materials , 2006, 18(15): 2031–2034
[75] Antonietti M, Breulmann M, G?ltner C G,
. Inorganic/organic mesostructures with complex architectures: precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers.
Chemistry- A European Journal , 1998, 4(12): 2493–2500
[76] Song R Q, Xu A W, Antonietti M,
. Calcite crystals with platonic shapes and minimal surfaces.
Angewandte Chemie International Edition , 2009, 48(2): 395–399
[77] Han S, Han H S, Lee S C,
. Mineralized hyaluronic acid nanoparticles as a robust drug carrier.
Journal of Materials Chemistry , 2011, 21(22): 7996–8001
[78] Furth G, Knierim R, Buss V,
. Binding of bivalent cations by hyaluronate in aqueous solution.
International Journal of Biological Macromolecules , 2008, 42(1): 33–40
[79] Scott J E, Heatley F. Hyaluronan forms specific stable tertiary structures in aqueous solution: a
13C NMR study.
Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(9): 4850–4855
[80] Lippmann F. Sedimentary Carbonate Minerals.
Berlin:
Springer-Verlag, 1973
[81] Orme C A, Noy A, Wierzbicki A,
. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps.
Nature , 2001, 411(6839): 775–779
[82] Fu G, Qiu S R, Orme C A,
. Acceleration of calcite kinetics by abalone nacre proteins.
Advanced Materials , 2005, 17(22): 2678–2683
[83] Kulp E A, Switzer J A. Electrochemical biomineralization: the deposition of calcite with chiral morphologies.
Journal of the American Chemical Society , 2007, 129(49): 15120–15121
[84] Huang Y X, Buder J, Cardoso-Gil R,
. Shape development and structure of a complex (otoconia-like?) calcite–gelatine composite.
Angewandte Chemie International Edition , 2008, 47(43): 8280–8284
[85] Weissbuch I, Addadi L, Leiserowitz L. Molecular recognition at crystal interfaces.
Science , 1991, 253(5020): 637–645
[86] Wolf S E, Loges N, Mathiasch B,
. Phase selection of calcium carbonate through the chirality of adsorbed amino acids.
Angewandte Chemie International Edition , 2007, 46(29): 5618–5623
[87] Lahav M, Leiserowitz L. Comments on “Mirror symmtry breaking” of the centrosymmetric CaCO
3 crystals with amino acids.
Angewandte Chemie International Edition , 2008, 47(20): 3680–3682
[88] Loges N, Wolf S E, Panth?fer M,
. Reply to “Mirror symmetry breaking” of the centrosymmetric CaCO
3 crystals with amino acids.
Angewandte Chemie International Edition , 2008, 47(20): 3683–3686
[89] Wang T X, C?lfen H, Antonietti M. Nonclassical crystallization: mesocrystals and morphology change of CaCO
3 crystals in the presence of a polyelectrolyte additive.
Journal of the American Chemical Society , 2005, 127(10): 3246–3247
[90] Wang T X, Antonietti M, C?lfen H. Calcite mesocrystals: “morphing” crystals by a polyelectrolyte.
Chemistry- A European Journal , 2006, 12(22): 5722–5730
[91] Pastero L, Aquilano D. CaCO
3 (calcite)/Li
2CO
3 (zabuyelite) anomalous mixed crystals. Sector zoning and growth mecha-nisms.
Crystal Growth & Design , 2008, 8(9): 3451–3460
[92] Rajam S, Mann S. Selective stabilization of the (001) face of calcite in the presence of lithium.
Journal of the Chemical Society: Chemical Communications , 1990, 24(24): 1789–1791
[93] Pastero L, Costa E, Bruno M,
. Morphology of calcite (CaCO
3) crystals growing from aqueous solutions in the presence of Li
+ ions. Surface behavior of the {0001} form.
Crystal Growth & Design , 2004, 4(3): 485–490
[94] Arias J L, Neira-Carrillo A, Arias J I,
. Sulfated polymers in biological mineralization: a plausible source for bio-inspired engineering.
Journal of Materials Chemistry , 2004, 14(14): 2154–2160
[95] Arias J L, Fernández M S. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization.
Chemical Reviews , 2008, 108(11): 4475–4482
[96] Chen Z H, Chen J Z, Li X D,
. Unpublished work
[97] Yu H, Sheikholeslami R, Doherty W O S. The effects of silica and sugar on the crystallographic and morphological properties of calcium oxalate.
Journal of Crystal Growth , 2004, 265(3–4): 592–603
[98] Grases F, García-Ferragut L, S?hnel O,
. Study on calcium oxalate monohydrate renal uroliths I. Qualitative properties.
Scandinavian Journal of Urology and Nephrology , 1995, 29(4): 413–419
[99] Demadis K D. In: Shah R K, ed.
Compact Heat Exchangers and Enhancement Technology for the Process Industries .
New York:
Begell House Inc., 2003, 483–490
[100] Ak?n B, ?ner M, Bayram Y,
. Effects of carboxylate-modified, “green” inulin biopolymers on the crystal growth of calcium oxalate.
Crystal Growth & Design , 2008, 8(6): 1997–2005
[101] Millan A. Crystal growth shape of whewellite polymorphs: Influence of structure distortions on crystal shape.
Crystal Growth & Design , 2001, 1(3): 245–254
[102] Wesson J A, Worcester E M, Kleinman J G. Role of anionic proteins in kidney stone formation: interaction between model anionic polypeptides and calcium oxalate crystals.
Journal of Urology , 2000, 163(4): 1343–1348
[103] Joshi V S, Parekh B B, Joshi M J,
. Herbal extracts of tribulus terrestris and bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals
in vitro.
Journal of Crystal Growth , 2005, 275(1–2): e1403–e1408
[104] Li X, Zhang D, Lynch-Holm V J,
. Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells.
Plant Physiology , 2003, 133(2): 549–559
[105] Backov R, Lee C M, Khan S R,
. Calcium oxalate monohydrate precipitation at phosphatidylglycerol Langmuir monolayers.
Langmuir , 2000, 16(14): 6013–6019
[106] Ouyang J M, Deng S P, Zhou N,
. Effect of tartrates with various counterions on the precipitation of calcium oxalate in vesicle solutions.
Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2005, 256(1): 21–27
[107] Skrti? D, Filipovi?-Vincekovi? N, Babi?-Ivan?i? V,
. Influence of sodium cholate on the crystallization of calcium oxalate.
Journal of Crystal Growth , 1993, 133(3–4): 189–195
[108] Weaver M L, Qiu S R, Hoyer J R,
. Inhibition of calcium oxalate monohydrate growth by citrate and the effect of the background electrolyte.
Journal of Crystal Growth , 2007, 306(1): 135–145
[109] Jung T, Sheng X, Choi C K,
. Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with
in situ atomic force microscopy.
Langmuir , 2004, 20(20): 8587–8596
[110] Guo S, Ward M D, Wesson J A. Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives.
Langmuir , 2002, 18(11): 4284–4291
[111] Akyol E, Bozkurt A, ?ner M. The effects of polyelectrolytes on the inhibition and aggregation of calcium oxalate crystallization.
Polymers for Advanced Technologies , 2006, 17(1): 58–65
[112] Akyol E, ?ner M. Inhibition of calcium oxalate monohydrate crystal growth using polyelectrolytes.
Journal of Crystal Growth , 2007, 307(1): 137–144
[113] Wang L, Qiu S R, Zachowicz W,
. Modulation of calcium oxalate crystallization by linear aspartic acid-rich peptides.
Langmuir , 2006, 22(17): 7279–7285
[114] Wesson J A, Worcester E M, Wiessner J H,
. Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules.
Kidney International , 1998, 53(4): 952–957
[115] Sallis J D, Lumley M F. On the possible role of glycosaminoglycans as natural inhibitors of calcium oxalate stones.
Investigative Urology , 1979, 16(4): 296–299
[116] Nishio S, Abe Y, Wakatsuki A,
. Matrix glycosaminoglycan in urinary stones.
Journal of Urology , 1985, 134(3): 503–505
[117] Angell A H, Resnick M I. Surface interaction between glycosaminoglycans and calcium oxalate.
Journal of Urology , 1989, 141(5): 1255–1258
[118] Asselman M, Verhulst A, De Broe M E,
. Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys.
Journal of the American Society of Nephrology , 2003, 14(12): 3155–3166
[119] Coe F L, Evan A P, Worcester E M,
. Three pathways for human kidney stone formation.
Urological Research , 2010, 38(3): 147–160
[120] Verkoelen C F. Crystal retention in renal stone disease: a crucial role for the glycosaminoglycan hyaluronan?
Journal of the American Society of Nephrology , 2006, 17(6): 1673–1687
[121] Asselman M, Williams J C, Evan A P,
. Hyaluronan and stone disease.
AIP Conference Proceedings , 2008, 1049: 133–144
[122] Jonassen J A, Cao L C, Honeyman T,
. Intracellular events in the initiation of calcium oxalate stones.
Nephron Experimental Nephrology , 2004, 98(2): e61–e64
[123] Ratkalkar V N, Kleinman J G. Mechanisms of stone formation.
Clinical Reviews in Bone and Mineral Metabolism , 2011, 9(3–4): 187–197
[124] Khan S R, Kok D J. Modulators of urinary stone formation.
Frontiers in Bioscience , 2004, 9(1–3): 1450–1482
[125] Khan S R. Role of renal epithelial cells in the initiation of calcium oxalate stones.
Nephron Experimental Nephrology , 2004, 98(2): e55–e60
[126] Basavaraj D R, Biyani C S, Browning A J,
. The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones.
EAU-EBU Update Series , 2007, 5(3): 126–136
[127] Schepers M S J, van der Boom B G, Romijn J C,
. Urinary crystallization inhibitors do not prevent crystal binding.
The Journal of Urology , 2002, 167(4): 1844–1847
[128] Knepper M A, Saidel G M, Hascall V C,
. Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer.
American Journal of Physiology- Renal Physiology , 2003, 284(3): F433–F446
[129] Hautmann R, Lehmann A, Komor S. Calcium and oxalate concentrations in human renal tissue: the key to the pathogenesis of stone formation?
The Journal of Urology , 1980, 123(3): 317–319
[130] Verkoelen C F, Van Der Boom B G, Romijn J C. Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells.
Kidney International , 2000, 58(3): 1045–1054
[131] Niemeyer C M, Mirkin C A.
Nanobiotechnology .
Weinheim:
Wiley-VCH, 2004
[132] Lee H, Choi S H, Park T G. Direct visualization of hyaluronic acid polymer chain by self-assembled one-dimensional array of gold nanoparticles.
Macromolecules , 2006, 39(1): 23–25
[133] Jeong Y I, Kim S T, Jin S G,
. Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation.
Journal of Pharmaceutical Sciences , 2008, 97(3): 1268–1276
[134] Kumar A, Sahoo B, Montpetit A,
. Development of hyaluronic acid–Fe
2O
3 hybrid magnetic nanoparticles for targeted delivery of peptides.
Nanomedicine: Nanotechnology, Biology and Medicine , 2007, 3(2): 132–137
[135] Lee Y, Lee H, Kim Y B,
. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging.
Advanced Materials , 2008, 20(21): 4154–4157
[136] Laroui H, Grossin L, Léonard M,
. Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage.
Biomacromolecules , 2007, 8(12): 3879–3885
[137] Mendes R M, Silva G A B, Caliari M V,
. Effects of single wall carbon nanotubes and its functionalization with sodium hyaluronate on bone repair.
Life Sciences , 2010, 87(7–8): 215–222
[138] Kim J, Park K, Hahn S K. Effect of hyaluronic acid molecular weight on the morphology of quantum dot-hyaluronic acid conjugates.
International Journal of Biological Macromolecules , 2008, 42(1): 41–45
[139] Bhang S H, Won N, Lee T J,
. Hyaluronic acid-quantum dot conjugates for
in vivo lymphatic vessel imaging.
ACS Nano , 2009, 3(6): 1389–1398
[140] Erathodiyil N, Ying J Y. Functionalization of inorganic nanoparticles for bioimaging applications.
Accounts of Chemical Research , 2011, 44(10): 925–935
[141] Cao M-R, Hou J, Zhang Q,
. Preparation of hyaluronic acid-quantum dot conjugate and its application in tumor imaging.
Chemical Journal of Chinese Universities , 2012, 33(03): 437–441
[142] Stadlinger B, Hintze V, Bierbaum S,
. Biological functionalization of dental implants with collagen and glycosaminoglycans — A comparative study.
Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2012, 100B(2): 331–341