Dec 2010, Volume 4 Issue 4

  • Select all
    Lizhong ZHU, Li LU, Dong ZHANG

    Organic contaminated soils have become a widespread environmental problem, which may lead to a great threat to the quality of agricultural production and to human health. Physical, chemical, and biological technologies have been employed for the mitigation and remediation of organic contaminated soils. This paper reviews the progress of mitigation and remediation technologies for organic contaminated soils and suggests two different strategies for the mitigation of ‘slightly-contaminated’ agricultural soils and the remediation of ‘heavily-contaminated’ soils/sites, respectively. On this basis, directions for future research in this field are suggested.

    Jinbao WU, Zongqiang GONG, Liyan ZHENG, Yanli YI, Jinghua JIN, Xiaojun LI, Peijun LI

    Solubilizing experiments were carried out to evaluate the ability of biodiesel to remove polycyclic aromatic hydrocarbons (PAHs) from highly contaminated manufactured gas plant (MGP) and PAHs spiked soils with hydroxypropyl-β-cyclodextrin (HPCD) and tween 80 as comparisons. Biodiesel displayed the highest solubilities of phenanthrene (420.7 mg·L-1), pyrene (541.0 mg·L-1), and benzo(a)pyrene (436.3 mg·L-1). These corresponded to several fold increases relative to 10% HPCD and tween 80. Biodiesel showed a good efficiency for PAH removal from the spiked and MGP soils for both low molecular weight and high molecular weight PAHs at high concentrations. Biodiesel was the best agent for PAH removal from the spiked soils as compared with HPCD and tween 80; as over 77.9% of individual PAH were removed by biodiesel. Tween 80 also showed comparable capability with biodiesel for PAH solubilization at a concentration of 10% for the spiked soils. Biodiesel solubilized a wider range of PAHs as compared to HPCD and tween 80 for the MPG soils. At PAH concentrations of 229.6 and 996.9 mg·kg-1, biodiesel showed obvious advantage over the 10% HPCD and tween 80, because it removed higher than 80% of total PAH. In this study, a significant difference between PAH removals from the spiked and field MGP soils was observed; PAH removals from the MGP soil by HPCD and tween 80 were much lower than those from the spiked soil. These results demonstrate that the potential for utilizing biodiesel for remediation of highly PAH-contaminated soil has been established.

    Changbo ZHANG, Qishi LUO, Chunnu GENG, Zhongyuan LI

    Stabilization is one of the best demonstrated available technologies for treating toxic pollutants in soils and has been used worldwide but is rarely used for treatment of contaminated sites in China despite many bench-scale studies. Here, a field-scale application of stabilization treatment in Shanghai, China was summarized to demonstrate the whole engineering process and the key technical issues regarding stabilization of contaminated soil. A site contaminated with arsenic (As) and polycyclic aromatic hydrocarbons (PAHs), formerly used as a lighting plant in Shanghai, was chosen as the demonstration site. Stabilizing measures were taken to treat the contaminated soil to reuse the site for residential purposes. The whole engineering remediation process consisted of phase I environmental site assessment (ESA) and phase II ESA, quantitative human health risk assessment, remediation alternatives evaluation, bench-scale testing, remedial design, engineering implementation, and post-remediation assessment. A third party conducted evaluation monitoring indicated desirable results were achieved via the stabilization treatment. In addition, some technical obstacles related to soil stabilization treatment were discussed, including soil quality evaluation, stabilization effectiveness validation, and soil reuse assessment.

    Xiaohong GUAN, Di HE, Jun MA, Guanghao CHEN

    As a green oxidant, permanganate has received considerable attention for the removal of micropollutants in drinking water treatment. To provide a better understanding of the oxidation of organic micropollutants with permanganate, the oxidation kinetics of 32 micropollutants were compiled. The pollutants include algal toxins, endocrine disrupting chemicals (EDCs), and pharmaceuticals. The oxidation kinetics of micropollutants by permanganate were found to be first order with respect to both contaminant and permanganate concentrations from which second-order rate constants (k″) were obtained. Permanganate oxidized the heterocyclic aromatics with vinyl moiety (i.e., microcystins, carbamazepine, and dichlorvos) by the addition of double bonds. For the polycyclic aromatic hydrocarbons (PAHs) with alkyl groups, permanganate attacked the benzylic C-H through abstraction of hydrogen. The mechanism for the oxidation of phenolic EDCs by permanganate was a single electron transfer and aromatic ring cleavage. The presence of background matrices could enhance the oxidation of some phenolic EDCs by permanganate, including phenol, chlorinated phenols, bisphenol A, and trichlosan. The toxicity of dichlorvos solution increased after permanganate oxidation, and the estrogenic activity of bisphnol A/estrone increased significantly at the beginning of permanganate oxidation. Therefore, the toxicity of degradation products or intermediates should be determined in the permanganate oxidation processes to better evaluate the applicability of permanganate. The influence of background ions on the permanganate oxidation process is far from clear and should be elucidated in the future studies to better predict the performance of permanganate oxidation of micropollutants. Moreover, methods should be employed to catalyze the permanganate oxidation process to achieve better removal of micropollutants.

    Zhijian LI, Shubo DENG, Xueying ZHANG, Wei ZHOU, Jun HUANG, Gang YU

    Three adsorbents including TiO2, Ti-Ce, and Ti-La hybrid oxides were prepared to remove fluoride from aqueous solution. The Ti-Ce and Ti-La hybrid adsorbents obtained by the hydrolysis-precipitation method had much higher sorption capacity for fluoride than the TiO2 adsorbent prepared through hydrolysis. Rare earth (Ce and La) oxides and TiO2 exhibited a synergistic effect in the hybrid adsorbents for fluoride sorption. The sorption equilibrium of fluoride on the three adsorbents was achieved within 4 h, and the pseudo-second-order model described the sorption kinetics well. The sorption isotherms fitted the Langmuir model well, and the adsorption capacities of fluoride on the Ti-Ce and Ti-La adsorbents were about 9.6 and 15.1 mg·g-1, respectively, at the equilibrium fluoride concentration of 1.0 mg·L-1, much higher than the 1.7 mg·g-1 on the TiO2. The sorption capacities of fluoride on the three adsorbents decreased significantly when the solution pH increased from 3 to 9.5. The electrostatic interaction played an important role in fluoride removal by the three adsorbents, and Fourier transform infrared (FTIR) analysis indicated that the hydroxyl groups on the adsorbent surface were involved in fluoride adsorption.

    Guixiang ZHANG, Xitao LIU, Ke SUN, Ye ZHAO, Chunye LIN

    Batch sorption experiments were conducted to evaluate the sorption behavior of tetracycline (TC, H3L) on sediments and soils in the presence and absence of cadmium (Cd), as affected by pH and properties of sediments and soils. The results indicated stronger nonlinearity and higher capacity of TC sorption on sediments than on soils. Sorption of TC also strongly depended on environmental factors and sediment/soil properties. Lower pH facilitated TC sorption through a cation exchange mechanism, which also took place at pH values above 5.5, where TC existed as a zwitterion (H2L0) or anions (HL- and L2-). When pH was above 7, however, ligand-promoted dissolution of TC might occur due to TC weakening the Al-O bond of aluminum oxide and the Fe-O bond of iron oxide. Natural organic matter (NOM) plays a more important role in TC sorption than cation exchange capacity (CEC) and clay contents. The presence of Cd (II) increased TC sorption on both sediments and soils, which resulted from the decrease of equilibrium solution pH caused by Cd2+ exchange with H+ ions of sediment/soil surfaces. The increase of TC sorption was also related to the formation of TC-Cd complexes, where Cd2+ acted as a bridge between the sediment/soil and TC.

    Yongji ZHANG, Lingling ZHOU, Guo ZENG, Huiping DENG, Guibai LI

    Nitrification occurs in chloraminated drinking water systems and is affected by water quality parameters. The aim of this study was to investigate the impact of total organic carbon and chlorine to ammonia ratio on nitrification potential in a simulated drinking water distribution system as during chloramination. The occurrence of nitrification and activity of nitrifying bacteria was primarily monitored using four rotating annular bioreactors (RAB) with different chlorine to ammonia ratios and total organic carbon (TOC) levels. The results indicated that nitrification occurred despite at a low influent concentration of ammonia, and a high concentration of nitrite nitrogen was detected in the effluent. The study illustrated that reactors 1(R1) and 3 (R3), with higher TOC levels, produced more nitrite nitrogen, which was consistent with the ammonia-oxidizing bacteria (AOB) counts, and was linked to a relatively more rapid decay of chloramines in comparison to their counterparts (R2 and R4). The AOB and HPC counts were correlated during the biofilm formation with the establishment of nitrification. Biofilm AOB abundance was also higher in the high TOC reactors compared with the low TOC reactors. The chlorine to ammonia ratio did not have a significant impact on the occurrence of nitrification. Bulk water with a high TOC level supported the occurrence of nitrification, and AOB development occurred at all examined chlorine to ammonia dose ratios (3∶1 or 5∶1).

    Quanlin DAI, Baifei HUANG, Zhongyi YANG, Jiangang YUAN, Junzhi YANG

    A maize variety, Huatian-1, had an unusually low translocation rate of cadmium (Cd) (59.6 mg·kg-1 in the roots and 0.093 mg·kg-1 in the grain) compared to 24 other varieties while being grown in soils with 16.50 mg·kg-1 Cd. This indicates that this particular species may have special mechanisms that affect the absorption and translocation pattern of Cd. In this paper, the technique of suppression subtractive hybridization (SSH) was used to isolate and identify Cd-induced genes from Huatian-1 hydroponically ?exposed? to? 0.1 mM ?CdCl2 ?for? 1 h,? 12 h, 24 h, and 48 h. We found a total of 15 differentially expressed genes in the four groups; 2, 3, 4, and 6 genes were from the groups of 1 h, 12 h, 24 h, and 48 h treatment, respectively. Phospholipase PLDb1 mRNA, adenosine triphosphate (ATP) phosphoribosyl transferase 2, and Sp17 were turned on in the maize in response to Cd stress, and it might provide new clues to explain the mechanism of maize tolerance to Cd.

    Shuting ZHANG, Bo WEI, Xin YU, Bing LIU, Zhuoying WU, Li GU

    The biologic activated carbon (BAC) process is widely used in drinking water treatments. A comprehensive molecular analysis of the microbial community structure provides very helpful data to improve the reactor performance. However, the bottleneck of deoxyribonucleic acid (DNA) extraction from BAC attached biofilm has to be solved since the conventional procedure was unsuccessful due to firm biomass attachment and adsorption capacity of the BAC granules. In this study, five pretreatments were compared, and adding skim milk followed by ultrasonic vibration was proven to be the optimal choice. This protocol was further tested using the vertical BAC samples from the full-scale biofilter of Pinghu Water Plant. The results showed the DNA yielded a range of 40 μg·g-1 BAC (dry weight) to over 100 μg·g-1 BAC (dry weight), which were consistent with the biomass distribution. All results suggested that the final protocol could produce qualified genomic DNA as a template from the BAC filter for downstream molecular biology researches.

    Chao HE, Zhaolin GU, Shucheng YANG, Jidong LIANG, Weina DAI, Yanling HE

    China’s paper production reached 79.8 ×106 t in 2008 and ranked number one in the world. Because of its high consumption of water, energy and materials and its serious pollution, the present processes are not likely to be sustainable. An alternative, the closed Water Loop-Papermaking Integration (WLPI) method, is put forward in this paper. The WLPI method can be realized in a recycled paper mill by adding technologies and using recycled water. Many industrial case studies have shown that a large quantity of water, energy and materials can be saved, and the quantity of waste sludge and wastewater discharge was minimized by using the WLPI method. The design of the water reuse system, control of calcium hardness, water recycling and minimal waste sludge are discussed. Anaerobic technology plays an important role in the WLPI method to lower cost, energy use and waste. In the brown paper and coated white board production, zero-effluent discharge can be realized. Fresh water consumption is only 1–2 m3·t-1. For the paper mills with deinking and bleaching processes, about 10 m3·t-1 of fresh water and a similar amount of effluent discharge are needed. Power saving using anaerobic technology is 70% when recycled water is used in comparison with the conventional activated sludge process. Waste sludge can be decreased to about 5% of the initial process due to reuse of the waste sludge and the lower bio-sludge production of the anaerobic process.

    Xuguang TANG, Shuying WANG, Yongzhen PENG

    The characteristic of phosphorus removal and appropriate change of the traditional operation modes were investigated in UniFed sequencing batch reactor (SBR) laboratory-scale apparatus (40 L), treating actual domestic wastewater with low ratios of C/N (2.57) and C/P (30.18), providing theoretical basis for actual application of wastewater treatment plant. UniFed SBR system with its unique operation mode had the distinct superiority of phosphorus removal. On this occasion, the effect of volumetric exchange ratio (VER) and the method of influent introduction for phosphorus removal were studied. When the carbon source became the limiting factor to phosphorus release, the higher the VER, the lower the phosphorus concentration in the effluent. Three different influent patterns, including one-time filling, four-time filling, and continuous filling with the same quantity of wastewater could increase the release rate of anaerobic phosphorus from 0.082 to 0.143 mg·P·(L·min)-1. Appropriate change of the traditional operation modes could optimize the efficiency of phosphorus removal. When the feed/ decant time was extended from 2 h to 4 h, the phosphorous removal efficiency increased from 59.93% to 88.45% without any external carbon source. In the mode of alternation of anoxic-aerobic (A/O) condition, phosphorous removal efficiency increased from 55.07% to 72.27% clearly. The carbon source in the influent can be used adequately, and denitrifying phosphorus removal was carried out in anoxic stage 2 (A2). This mode was optimal for the treatment of actual domestic wastewater with low C/N and C/P ratios.

    Wei WANG, Lei ZHENG, Feng WANG, Xiao WAN, Keqing YIN, Xingbao GAO

    The element-release behavior of municipal solid waste incineration fly ash was explored through leaching test with continuous set-point pH (pHstat test) and serial single reaction cell (SSRC) tests. First, the relationship between element release and acid neutralizing capacity (ANC) consumption was examined with a pHstat test. Four types of release behaviors were identified which are characteristic for different elements: (1) release curves that were almost linear with ANC consumption (Ca, Zn, and Cd); (2) release that was significantly faster than ANC (Na, K, and Cl); (3) curves that featured a strong increase with ANC consumption, after a transient release, followed by an almost equal decrease (Si and S); and (4) release that is strongly retarded compared with ANC consumption (Cr, Cu, and Pb). In the SSRC system, it the existence of a pH front and a wash-out phenomenon is demonstrated. Combining the results from the SSRC test with the kinetic analysis of the ANC system in the pHstat test, it was inferred that less than one-third of the ANC measured from a batch pH titration plays a neutralization role in a field situation. The methodologies described may provide a powerful set of tools for systematic evaluation of element release from solid wastes.

    Hongjing LI, Xiurong CHEN, Yinguang CHEN

    The effect of additional organic carbon sources on the production of nitrous oxide (N2O) in anaerobic-aerobic (low dissolved oxygen) real wastewater treatment system was investigated. In this paper, three laboratory-scale sequencing batch reactors (SBRs) (SBR-1, SBR-2 and SBR-3) were operating under an anaerobic-aerobic (low dissolved oxygen, 0.15–0.45 mg·L-1) configuration. The SBRs were ‘long-term cultured’ respectively with a single municipal wastewater sample, sodium acetate, and a waste-activated sludge alkaline fermentation liquid as the additional carbon sources of real wastewater. Off-gas analysis showed that N2O was emitted into the atmosphere during the aerobic (low dissolved oxygen) period in the three SBRs, and the order of N2O emission rate was SBR-2>SBR-1>SBR-3. It was observed that the higher poly-β-hydroxyvalerate fraction of polyhydroxyalkanoates, the lower glycogen transformation and less nitrite accumulation was in SBR-3, while the opposite behavior was observed in SBR-2. Further research indicated that the interaction of the factors above potentially affected the N2O emission in the anaerobic-aerobic (low dissolved oxygen) system.