Silicalite-1 was hydrothermally synthesized in the presence of different concentrations of Na+ using tetrapropylammonium hydroxide (TPAOH) as a template. The synthesis was followed by a base treatment. The silicalite-1samples were characterized using X-ray diffraction, scanning electron microscopy, N2 adsorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and NH3 temperature-programmed desorption. The samples were used as catalysts for the vapor phase Beckmann rearrangement of cyclohexanone oxime. During the synthesis, the sodium ions were incorporated onto the silicalite-1 crystals, but were then removed by the base treatment. All the catalysts exhibited nearly complete conversion of cyclohexanone oxime to ?-caprolactam with selectivities grater than 95%. Addition of less than 2.5 mol-% Na+ (relative to TPAOH) did not influence the catalytic properties. However, for Na+ concentrations≥5 mol-%, the particle sizes of silicalite-1 increased and the catalytic activities decreased, which can be attributed to carbon deposition. The results in this work are of great importance for the polymer industry.
By using the corresponding
Magnesium hydroxide with high purity and uniform particle size distribution was synthesized by the direct precipitation method using MgCl2 and NaOH as reactive materials and NaCl as additive to improve the crystallization behavior of the product. The particle size distribution, crystal phase, morphology, and surface area of magnesium hydroxide were characterized by Malvern laser particle size analyzer, X-ray diffraction (XRD), scanning electron microscope (SEM) and Branauer-Emmett-Teller (BET) method, respectively. The purity of products was analyzed by the chemical method. The effects of synthesis conditions on the particle size distribution and water content (filtration cake) of magnesium hydroxide were investigated. The results indicated that feeding mode and rate, and reaction temperature had important effects on water content and the particle size distribution of the product, and sodium chloride improved the crystallization behavior of magnesium hydroxide. The ball-like magnesium hydroxides with the particle size distribution of 6.0–30.0 μm and purity higher than 99.0% were obtained. This simple and mild synthesis method was promising to be scaled up for the industrial production of magnesium hydroxide.
Two donor-σ-acceptor molecular systems incorporating tetrathiafulvalene (TTF) and tetraphenylporphyrin (TPP) units, TTF-TPP (
Sb3+-doped YBO3 crystals were prepared through a low-temperature hydrothermal method and a high-temperature solid-state technique, respectively. The effects of preparation methods on the morphologies and luminescent properties of YBO3 phosphors were investigated. The YBO3 crystals from the hydrothermal system look like flowers, whereas those from the solid-state process look like some agglomerates of little spheres. The Sb3+-doped YBO3 powders prepared via both methods showed the blue emission with the peak at around 452 nm, which corresponds to the 3P1→1S0 transition of Sb3+ ions. However, the emission intensity of the Sb3+-doped YBO3 from the hydrothermal system is about 3.5 times as much as that from the solid-state process. The (Sb3+,Eu3+) co-doped YBO3 crystals were also prepared through the two methods. The results showed that the emission intensity of Sb3+ ions in (Sb3+, Eu3+) co-doped YBO3 synthesized by the hydrothermal method is stronger than that by the solid-state process.
In this paper a porous media seepage model was applied to analyze the permeability and study the seepage process of crystal pillar formed in the preparation of electronic grade phosphoric acid (EGPA). By inspecting the seeping process, the structure parameter of crystal pillar could be obtained. Two basic ideal models (perfectly separated model and perfectly connected model) were presented and a characterized factor
Penicillin sulfoxide is the intermediate for the synthesis of 7-amino-3-desacetoxycephalosporanic acid which is one of the most important nucleuses of cephalosporin antibiotic. In this contribution, two crystal structures of penicillin sulfoxide (forms I and II) were determined by X-ray diffraction, and their thermotropic properties were investigated by differential scanning calorimetry (DSC). Furthermore, the transformation of form II to form I was studied quantitatively by Raman spectroscopy, and its rates at different temperatures were determined. The results indicate that penicillin sulfoxide is more stable as form I, and the temperature plays an important role in the crystal transformation.
Interfacial Marangoni convection has significant effect on gas-liquid and/or liquid-liquid mass transfer processes. In this paper, an approach based on lattice Boltzmann method is established and two perturbation models, fixed perturbation model and self-renewable interface model, are proposed for the simulation of interfacial Marangoni convection in gas-liquid mass transfer process. The simulation results show that the concentration contours are well consistent with the typical roll cell convection patterns obtained experimentally in previous studies.
Computational fluid dynamics (CFD) was used to investigate the hydrodynamic parameters of two internal airlift bioreactors with different configurations. Both had a riser diameter of 0.1 m. The model was used to predict the effect of the reactor geometry on the reactor hydrodynamics. Water was utilized as the continuous phase and air in the form of bubbles was applied as the dispersed phase. A two-phase flow model provided by the bubbly flow application mode was employed in this project. In the liquid phase, the turbulence can be described using the
A Plackett-Burman design was employed for screening 18 nutrient components for the production of inulinase using
The magnetohydrodynamic (MHD) boundary layer slip flow and solute transfer over a porous plate in the presence of a chemical reaction are investigated. The governing equations were transformed into self-similar ordinary differential equations by adopting the similarity transformation technique. Then the numerical solutions are obtained by a shooting technique using the fourth order Runge-Kutta method. The study reveals that due to the increase in the boundary slip, the concentration decreases and the velocity increases. On the other hand, with an increase in the magnetic field and mass suction, both boundary layer thicknesses decreased. As the Schmidt number and the reaction rate parameter increases, the concentration decreases and the mass transfer increases.
The capture of CO2 by transition metal (Mn, Ni, Co and Zn) aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate was carried out at pre- and post-combustion temperatures. The prepared metal adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), surface area analysis and acidity/alkalinity measurements. The different experimental variables affecting the adsorbents ability to capture CO2, such as the mol ratio of metal ions, the pressure of CO2, the exposure time and the temperature of the adsorbent were also investigated. Calcium zirconate captured 13.85 wt-% CO2 at 650°C and 2.5 atm and calcium silicate captured 14.31 wt-% at 650°C. Molecular sieves (13X) and carbon can only capture a negligible amount of CO2 at high temperatures (300°C–650°C). However, the mixed metal oxides captured reasonable amount of CO2 at these higher temperatures. In addition, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate adsorbents captured CO2 at both pre and post-combustion temperatures. The trend for the amount of captured carbon dioxide over the adsorbents was calcium aluminate<lithium zirconate<calcium zirconate<calcium silicate.
The effects of the operating pressure, cross flow velocity, feed concentration, and temperature on the streaming and Zeta potential of the membranes were studied. The permeate flux and the retention rate under different nanofiltration operating conditions were also investigated. The results show that the higher pressure, feed concentration, temperature, and lower cross flow velocity lead to the higher absolute value of streaming and Zeta potential. The permeate flux of the nanofiltration decreases with the feed concentration and increases with not only the pressure but also the cross flow velocity and temperature. The higher the pressure and the cross flow velocity, the higher the retention rate. The lower feed concentration and higher temperature leads to lower retention rate. The effects of the operating conditions on the permeate flux and the retention rate were explained by the variation of the membrane charge property.
The effects of different solvent/water coagulation mediums, different coagulation bath temperatures (CBT) and different coagulants on the performance, morphology and thermal stability of polysulfone membranes were investigated. The CO2/CH4, H2/CH4 and H2/N2 separation performance of the membranes were studied by gas permeation. Changing the