The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate

Ganesh TILEKAR, Kiran SHINDE, Kishor KALE, Reshma RASKAR, Abaji GAIKWAD

PDF(437 KB)
PDF(437 KB)
Front. Chem. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (4) : 477-491. DOI: 10.1007/s11705-011-1107-y
RESEARCH ARTICLE

The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate

Author information +
History +

Abstract

The capture of CO2 by transition metal (Mn, Ni, Co and Zn) aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate was carried out at pre- and post-combustion temperatures. The prepared metal adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), surface area analysis and acidity/alkalinity measurements. The different experimental variables affecting the adsorbents ability to capture CO2, such as the mol ratio of metal ions, the pressure of CO2, the exposure time and the temperature of the adsorbent were also investigated. Calcium zirconate captured 13.85 wt-% CO2 at 650°C and 2.5 atm and calcium silicate captured 14.31 wt-% at 650°C. Molecular sieves (13X) and carbon can only capture a negligible amount of CO2 at high temperatures (300°C–650°C). However, the mixed metal oxides captured reasonable amount of CO2 at these higher temperatures. In addition, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate adsorbents captured CO2 at both pre and post-combustion temperatures. The trend for the amount of captured carbon dioxide over the adsorbents was calcium aluminate<lithium zirconate<calcium zirconate<calcium silicate.

Keywords

captured CO2 / pre-combustion temperature / characterization / calcium silicate / calcium zirconate

Cite this article

Download citation ▾
Ganesh TILEKAR, Kiran SHINDE, Kishor KALE, Reshma RASKAR, Abaji GAIKWAD. The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate. Front Chem Sci Eng, 2011, 5(4): 477‒491 https://doi.org/10.1007/s11705-011-1107-y

References

[1]
Birkholzer J T, Zhou Q, Tsang C F. Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on the pressure response in stratified systems. International Journal of Greenhouse Gas Control, 2009, 3(2): 181-194
[2]
Nathwani J, Ng A. Paths to sustainable energy. Croatia: InTech publisher, 2010, 461-482
[3]
Gupta H, Fan L S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(16): 4035-4042
[4]
Mosqueda H A, Vazquez C, Bosch P, Pfeiffer H. Chemical Sorption of Carbon Dioxide (CO2) on Lithium Oxide (Li2O). Chemistry of Materials, 2006, 18: 2307-2310
[5]
López-Ortiz A, Perez Rivera N G, Reyes Rojas A, Lardizabal Gutierrez D. Novel carbon dioxide solid acceptors using sodium containing oxides. Separation Science and Technology, 2005, 39(15): 3559-3572
[6]
Douglas A, Costas T. Separation of CO2 from flue gas: a review. Separation Science and Technology, 2005, 40(1): 321-348
[7]
Hutson N D, Attwood B C. High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 2008, 14(6): 781-789
[8]
Yong Z, Mata V, Rodrigues A E. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTIcs) at high temperatures. Industrial & Engineering Chemistry Research, 2001, 40(1): 204-209
[9]
Iwan A, Stephenson H, Ketchie W C, Lapkin A A. High temperature sequestration of CO2 using lithium zirconates. Chemical Engineering Journal, 2009, 146(2): 249-258
[10]
Ida J I, Lin Y S. Mechanism of high-temperature CO2 sorption on lithium zirconate. Environmental Science & Technology, 2003, 37(9): 1999-2004
[11]
Avalos-Rendón T, Casa-Madrid J, Pfeiffer H. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. The Journal of Physical Chemistry A, 2009, 113(25): 6919-6923
[12]
Khomane R B, Sharma B K, Saha S, Kulkarni B D. Reverse microemulsion mediated sol-gel synthesis of lithium silicate nanoparticles under ambient conditions: scope for CO2 sequestration. Chemical Engineering Science, 2006, 61(10): 3415-3418
[13]
Wang M, Lee C G. Adsorption of CO2 on CaSiO3 at high temperature. Energy Conversion and Management, 2009, 50(3): 636-638
[14]
Pfeiffer H, Bosch P. Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7). Chemistry of Materials, 2005, 17(7): 1704-1710
[15]
Kwang B Y, Eriksen D Ø. Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separation Science and Technology, 2006, 41(2): 283-296
[16]
Kalinkin A M, Boldyrev V V, Politov A A, Kalinkina E V, Makarov V N, Kalinnikov V T. Investigation into the mechanism of interaction of calcium and magnesium silicates with carbon dioxide in the course of mechanical activation. Glass Physics and Chemistry, 2003, 29(4): 410-414
[17]
Korake P V, Gaikwad A G. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures. Frontiers in Chemical Science and Engineering, 2011, 5(2): 215-226
[18]
D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082
[19]
Cho J S, Kim S M, Chun H D, Han G W, Lee C H. Carbon dioxide capture with accelerated carbonation of industrial combustion waste. International Journal of Chemical Engineering and Applications, 2011, 2(1): 60-65
[20]
Ochoa-Fernández E, Rønning M, Grande T, Chen D. Synthesis and CO2 capture properties of nan-ocrystalline lithium zirconate. Chemistry of Materials, 2006, 18(25): 6037-6046
[21]
Fauth D J, Frommell E A, Hoffman J S, Reasbeck R P, Pennline H W. Eutectic salt promoted lithium zirconate: novel high temperature sorbent for CO2 capture. Fuel Processing Technology, 2005, 86(14-15): 1503-1521
[22]
Wang M, Lee C G, Ryu C K.CO2 sorption and desorption efficiency of Ca2SiO4. International Journal of Hydrogen Energy, 2008, 33(21): 6368-6372
[23]
Wang Q, Luo J, Zhong Z, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science, 2011, 4(1): 42-55
[24]
Galven C, Fourquet J L, Suard E, Crosnier-Lopez M P, Le Berre F.Mechanism of a reversible CO2 capture monitored by the layered perovskite Li2SrTa2O7. Dalton Transactions (Cambridge, England), 2010, 39(17): 4191-4197
[25]
Ida J, Xiong R, Lin Y S. Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Separation and Purification Technology, 2004, 36(1): 41-51
[26]
Wang K, Guo X, Zhao P, Zheng C.Cyclic CO2 capture of CaO-based sorbent in the presence of meta-kaolin and aluminum (hydro) oxides. Applied Clay Science, 2010, 50(1): 41-46
[27]
Wang J, Manovic V, Wu Y, Anthony E J.A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes. Applied Energy, 2010, 87(4): 1453-1458
[28]
Manovic V, Anthony E J.Reactivation and remaking of calcium aluminate pellets for CO2 capture. Fuel, 2011, 90(1): 233-239
[29]
Florin N, Fennell P.Synthetic CaO-based sorbent for CO2 capture. Energy Procedia, 2011, 4: 830-838
[30]
Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-bed reactor for removal of CO2 from combustion processes. Institution of Chemical Engineers Trans IChemE, 1999, 77: 63-68
[31]
Yuhua D.Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO2 capture: a first-principles density-functional theory and phonon dynamics approach. Journal of Renewable Sustainable Energy, 2011, 3, 013102-2-19
[32]
Pacciani R, Müller C R, Davidson J F, Dennis J S, Hayhurst A N. Synthetic Ca-based solid sorbents suitable for capturing CO2 in a fluidized bed. The Canadian Journal of Chemical Engineering, 2008, 86(3): 356-366
[33]
Fauth D J, Hoffman J S, Pennline H W. Dry regenerable sorbents for the separation and capture of CO2 from large point sources. International Journal of Environmental Technology and Management, 2004, 4: 68-81
[34]
Hernández L O G, Gutiérrez D L, Collins-Martínez V, Ortiz A L. Synthesis, characterization and high temperature CO2 capture evaluation of Li2ZrO3-Na2ZrO3 mixtures. Journal of New Materials for Electrochemical Systems, 2008, 11: 137-142
[35]
Marini L.Geological sequestration of carbon dioxide, thermodynamics, kinetics, and reaction path modeling. Elsevier, 2006, 11, 1-453
[36]
Jambor J L, Sabina A P, Roberts A C, Sturman B D. Strontiodresserite, a new Sr-Al carbonate from Montreal Island, Quebec. Canadian Mineralogist, 1977, 15: 405-407
[37]
Roberts A C. The space group of strontiodresserite. Geological Survey of Canada Paper, 1978, 78-1B, 180
[38]
Suzuki Y, Morgan P E D, Ohji T. New uniformly porous CaZrO3/MgO composites with three-dimensional network structure from natural dolomite. Journal of the American Ceramic Society, 2000, 83(8): 2091-2093
[39]
Backs S J, Etsell T H. Electrical properties of transition metal aluminate spinels. Solid State Ionics, 1992, 53-56: 1305-1310
[40]
Lucovsky G, Whitten J L., Zhang Y. A molecular orbital model for the electronic structure of transition metal atoms in silicate and aluminate alloys. Microelectronic Engineering, 2001, 59(1-4): 329-334
[41]
Al-Raihani H, Durand B, Chassagneux F, Inman D. A novel preparation of calcia fully stabilized zirconia from molten alkali-metal nitrate. Journal of Materials Chemistry, 1996, 6(3): 495-500
[42]
Brixner L H, Babcock K. Inorganic single crystals from reactions in fused salts. Materials Research Bulletin, 1968, 3(10): 817-824
[43]
Bi Z, Zhang R, Wang X, Gu S, Shen B, Shi Y, Liu Z, Zheng Y. Synthesis of zinc aluminate spinel film through the solid-phase reaction between zinc oxide film and α-alumina substrate. Journal of the American Ceramic Society, 2003, 86(12): 2059-2062
[44]
Bakker W J W., Kapteijn F, Moulijn J A. A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production: conceptual process application to coal gas cleaning. Chemical Engineering Journal, 2003, 96: 223-235
[45]
Serna-Guerrero R, Belmabkhout Y, Sayari A. Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies. Adsorption, 2010, 16(6): 567-575

Acknowledgments

The authors are grateful to the Department of Science and Technology, Government of India for Research Grant GAP271526.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(437 KB)

Accesses

Citations

Detail

Sections
Recommended

/