Influence of Na+ on the synthesis of silicalite-1 catalysts for use in the vapor phase Beckmann rearrangement of cyclohexanone oxime

Rumin YANG, Fanhui MENG, Xiao WANG, Yaquan WANG

PDF(459 KB)
PDF(459 KB)
Front. Chem. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (4) : 401-408. DOI: 10.1007/s11705-011-1129-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Influence of Na+ on the synthesis of silicalite-1 catalysts for use in the vapor phase Beckmann rearrangement of cyclohexanone oxime

Author information +
History +

Abstract

Silicalite-1 was hydrothermally synthesized in the presence of different concentrations of Na+ using tetrapropylammonium hydroxide (TPAOH) as a template. The synthesis was followed by a base treatment. The silicalite-1samples were characterized using X-ray diffraction, scanning electron microscopy, N2 adsorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and NH3 temperature-programmed desorption. The samples were used as catalysts for the vapor phase Beckmann rearrangement of cyclohexanone oxime. During the synthesis, the sodium ions were incorporated onto the silicalite-1 crystals, but were then removed by the base treatment. All the catalysts exhibited nearly complete conversion of cyclohexanone oxime to ϵ-caprolactam with selectivities grater than 95%. Addition of less than 2.5 mol-% Na+ (relative to TPAOH) did not influence the catalytic properties. However, for Na+ concentrations≥5 mol-%, the particle sizes of silicalite-1 increased and the catalytic activities decreased, which can be attributed to carbon deposition. The results in this work are of great importance for the polymer industry.

Keywords

silicalite-1 / cyclohexanone oxime / vapor phase Beckmann rearrangement / ϵ-caprolactam

Cite this article

Download citation ▾
Rumin YANG, Fanhui MENG, Xiao WANG, Yaquan WANG. Influence of Na+ on the synthesis of silicalite-1 catalysts for use in the vapor phase Beckmann rearrangement of cyclohexanone oxime. Front Chem Sci Eng, 2011, 5(4): 401‒408 https://doi.org/10.1007/s11705-011-1129-5

References

[1]
Hölderich W F, Röseler J, Heitmann G, Liebens A T. The use of zeolites in the synthesis of fine and intermediate chemicals. Catalysis Today, 1997, 37(4): 353–366
[2]
Sato H. Acidity control and catalysis of pentasil zeolites. Catalysis Reviews. Science and Engineering, 1997, 39(4): 395–424
[3]
Dahlhoff G, Niederer J P M, Hoelderich W F. e-Caprolactam: new by-product free synthesis routes. Catalysis Reviews, 2001, 43(4): 381–441
[4]
Mao D, Lu G, Chen Q. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over B2O3 catalysts supported on TiO2-ZrO2 mixed oxide. Reaction Kinetics and Catalysis Letters 2002, 75(1): 75–80
[5]
Mao D S, Chen Q L, Lu G Z. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over B2O3/TiO2-ZrO2. Applied Catalysis A, General, 2003, 244(2): 273–282
[6]
Xu B Q, Cheng S B, Zhang X, Zhu Q M. B2O3/ZrO2 for Beckmann rearrangement of cyclohexanone oxime: optimizing of the catalyst and reaction atmosphere. Catalysis Today, 2000, 63(2-4): 275–282
[7]
Heitmann G P, Dahlhoff G, Niederer J P M, Hölderich W F. Active sites of a [B]-ZSM-5 zeolite catalyst for the Beckmann rearrangement of cyclohexanone oxime to caprolactam. Journal of Catalysis, 2000, 194(1): 122–129
[8]
Heitmann G P, Dahlhoff G, Hölderich W F. Catalytically active sites for the Beckmann rearrangement of cyclohexanone oxime to ϵ-caprolactam. Journal of Catalysis, 1999, 186(1): 12–19
[9]
Kath H, Gläser R, Weitkamp J. Beckmann rearrangement of cyclohexanone oxime on MFI-type zeolites. Chemical Engineering & Technology, 2001, 24(2): 150–153
[10]
Takahashi T, Nasution M N A, Kai T. Effects of acid strength and micro pore size on ϵ-caprolactam selectivity and catalyst deactivation in vapor phase Beckmann rearrangement over acid solid catalysts. Applied Catalysis A, General, 2001, 210(1-2): 339–344
[11]
Ichihashi H, Kitamura M. Some aspects of the vapor phase Beckmann rearrangement for the production of ϵ-caprolactam over high silica MFI zeolites. Catalysis Today, 2002, 73(1-2): 23–28
[12]
Ichihashi H, Ishida M, Shiga A, Kitamura M, Suzuki T, Suenobu K, Sugita K. The catalysis of vapor-phase Beckmann rearrangement for the production of ϵ-caprolactam. Catalysis Surveys from Asia, 2003, 7(4): 261–270
[13]
Takahashi T, Kai T, Nakao E. Catalyst deactivation in the Beckmann rearrangement of cyclohexanone oxime over HZSM-5 zeolite and silica-alumina catalysts. Applied Catalysis A, General, 2004, 262(2): 137–142
[14]
Forni L, Fornasari G, Giordano G, Lucarelli C, Katovic A, Trifirò F, Perri C, Nagy J B. Vapor phase Beckmann rearrangement using high silica zeolite catalyst. Physical Chemistry Chemical Physics, 2004, 6: 1842–1847
[15]
Tao W C, Mao D S, Xia J C, Chen Q L, Hu Y. Effect of hydrofluoric acid post-treatments on catalytic performance of silicalite-1 for vapor-phase Beckmann rearrangement of cyclohexanone oxime. Chinese Journal of Catalysis, 2006, 27(3): 245–249
[16]
Chang J C, Ko A N. Beckmann rearrangement of cyclohexanone oxime to ϵ-caprolactam using mesoporous molecular sieves Al-SBA-15. Reaction Kinetics and Catalysis Letters, 2004, 83(2): 283–290
[17]
Zhang Y, Wang Y, Bu Y, Mi Z, Wu W, Min E, Han S, Fu S. Beckmann rearrangement of cyclohexanone oxime over Hβ zeolite and Hβ zeolite-supported boride. Catalysis Communications, 2005, 6(1): 53–56
[18]
Bu Y F. MFI Zeolites for the vapor phase Beckmann rearrangement of cyclohexanone oxime. Dissertation for the Doctoral degree. Tianjin: Tianjin University, 2005 (in Chinese)
[19]
Bu Y F, Wang Y Q, Zhang Y J, Wang L, Mi Z T, Wu W, Min E Z, Fu S B. Influences of ethylenediamine treatment of Silicalite-1 on the catalytic vapor-phase Beckmann rearrangement of cyclohexanone oxime. Catalysis Communications, 2007, 8(1): 16–20
[20]
Marthala V R R, Jiang Y, Huang J, Wang W, Gläser R, Hunger M. Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites Silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy. Journal of the American Chemical Society, 2006, 128(46): 14812–14813
[21]
Bonelli B, Forni L, Aloise A, Nagy J B, Fornasari G, Garrone E, Gedeon A, Giordano G, Trifirò F. Beckmann rearrangement reaction: about the role of defect groups in high silica zeolite catalysts. Microporous and Mesoporous Materials, 2007, 101(1-2): 153–160
[22]
Zhang Y, Wang Y, Bu Y, Wang L, Mi Z, Wu W, Min E, Fu S, Zhu Z, He F, Han S. Synthesis of Ti-Hβ zeolites by liquid-solid isomorphous substitution and the catalytic properties in the vapor phase Beckmann rearrangement of cyclohexanone oxime. Reaction Kinetics and Catalysis Letters, 2007, 90(2): 365–372
[23]
Izumi Y, Ichihashi H, Shimazu Y, Kitamura M, Sato H. Development and industrialization of the vapor-phase Beckmann rearrangement process. Bulletin of the Chemical Society of Japan, 2007, 80(7): 1280–1287
[24]
Fernández A B, Lezcano-Gonzalez I, Boronat M, Blasco T, Corma A. NMR spectroscopy and theoretical calculations demonstrate the nature and location of active sites for the Beckmann rearrangement reaction in microporous materials. Journal of Catalysis, 2007, 249(1): 116–119
[25]
Marthala V R R, Rabl S, Huang J, Rezai S A S, Thomas B, Hunger M. In situ solid-state NMR investigations of the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime on MFI-type zeolites and mesoporous SBA-15 materials in the absence and presence of the additive 13C-methanol. Journal of Catalysis, 2008, 257(1): 134–141
[26]
Pavel C C, Palkovits R, Schüth F, Schmidt W. The benefit of mesopores in ETS-10 on the vapor-phase Beckmann rearrangement of cyclohexanone oxime. Journal of Catalysis, 2008, 254(1): 84–90
[27]
Zhang Y, Wang Y, Bu Y. Vapor phase Beckmann rearrangement of cyclohexanone oxime on Hβ-zeolites treated by ammonia. Microporous and Mesoporous Materials, 2008, 107(3): 247–251
[28]
Sirijaraensre J, Limtrakul J. Effect of the acidic strength on the vapor phase Beckmann rearrangement of cyclohexanone oxime over the MFI zeolite: an embedded ONIOM study. Physical Chemistry Chemical Physics, 2009, 11(3): 578–585
[29]
Conesa T D, Luque R, Campelo J M, Luna D, Marinas J M, Romero A A. Gas-phase Beckmann rearrangement of cyclododecanone oxime on Al,B-MCM-41 mesoporous materials. Journal of Materials Science, 2009, 44(24): 6741–6746
[30]
Reddy B M, Reddy G K, Rao K N, Katta L. Influence of alumina and titania on the structure and catalytic properties of sulfated zirconia: Beckmann rearrangement. Journal of Molecular Catalysis A Chemical, 2009, 306(1-2): 62–68
[31]
Palkovits R, Schmidt W, Ilhan Y, Erdem-Senatalar A, Schüth F. Crosslinked TS-1 as stable catalyst for the Beckmann rearrangement of cyclohexanone oxime. Microporous and Mesoporous Materials, 2009, 117(1-2): 228–232
[32]
Cesana A, Palmery S, Buzzoni R, Spanò G, Rivetti F, Carnelli L. Silicalite-1 deactivation in vapour phase Beckmann rearrangement of cyclohexanone oxime to caprolactam. Catalysis Today, 2010, 154(3-4): 264–270
[33]
Bordoloi A, Halligudi S B. Catalytic properties of WOx/SBA-15 for vapor-phase Beckmann rearrangement of cyclohexanone oxime. Applied Catalysis A, General, 2010, 379(1-2): 141–147
[34]
Zhang D, Wang R, Yang X, Yao W. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over phosphorus modified Si-MCM-41. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101(2): 455–463
[35]
Persson A E, Schoeman B J, Sterte J, Otterstedt J E. Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA)ZSM-5 crystals. Zeolites, 1995, 15(7): 611–619
[36]
Van Grieken R, Sotelo J L, Menéndez J M, Melero J A. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials, 2000, 39(1-2): 135–147
[37]
Nam H J, Amemiya T, Murabayashi M, Itoh K. The influence of Na+ on the crystallite size of TiO2 and the photocatalytic activity. Research on Chemical Intermediates, 2005, 31(4): 365–370
[38]
Flanigen E M, Bennett J M, Grose R W, Cohen J P, Patton R L, Kirchner R M, Smith J V. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 1978, 271(5645): 512–516
CrossRef Google scholar
[39]
Feng F, Jr Balkus K J. Recrystallization of layered silicates to silicalite-1. Microporous and Mesoporous Materials, 2004, 69(1-2): 85–96
[40]
Choudhary V R, Akolekar D B. Crystallization of silicalite-factors affecting its structure, crystal size and morphology. Materials Chemistry and Physics, 1988, 20(4-5): 299–308
[41]
Matsumura Y, Hashimoto K, Kobayashi H, Yoshida S. The role of sodium ions as adsorption sites in silicalite-1. Journal of the Chemical Society, Faraday Transactions, 1990, 86(3): 561–565
[42]
Butler J D, Poles T C. Beckmann rearrangement of cyclopentanone oxime catalysed by decationated zeolite. Journal of the Chemical Society, Perkin Transactions, 1973, 2: 1262–1266

Acknowledgements

The authors gratefully acknowledge the financial support by Tianchen Corp. China.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(459 KB)

Accesses

Citations

Detail

Sections
Recommended

/