Cover illustration
The cover image shows a 3D model of the mouse chromosome 6 in mouse embryonic stem cells, predicted by the Bayesian 3D constructor for Hi-C data (BACH). Each sphere represents a topological domain. The volume of each sphere is proportional to the genomic size of the corresponding topological domain. The red, white and blue colors represent topological domains belonging to compartment A, straddle region and compartment B, respectively. Compartment A contains gene rich, activel[Detail] ...
Non-smooth or even abrupt state changes exist during many biological processes, e.g., cell differentiation processes, proliferation processes, or even disease deterioration processes. Such dynamics generally signals the emergence of critical transition phenomena, which result in drastic changes of system states or eventually qualitative changes of phenotypes. Hence, it is of great importance to detect such transitions and further reveal their molecular mechanisms at network level. Here, we review the recent advances on dynamical network biomarkers (DNBs) as well as the related theoretical foundation, which can identify not only early signals of the critical transitions but also their leading networks, which drive the whole system to initiate such transitions. In order to demonstrate the effectiveness of this novel approach, examples of complex diseases are also provided to detect pre-disease stage, for which traditional methods or biomarkers failed.
The specificity of protein-DNA interactions is most commonly modeled using position weight matrices (PWMs). First introduced in 1982, they have been adapted to many new types of data and many different approaches have been developed to determine the parameters of the PWM. New high-throughput technologies provide a large amount of data rapidly and offer an unprecedented opportunity to determine accurately the specificities of many transcription factors (TFs). But taking full advantage of the new data requires advanced algorithms that take into account the biophysical processes involved in generating the data. The new large datasets can also aid in determining when the PWM model is inadequate and must be extended to provide accurate predictions of binding sites. This article provides a general mathematical description of a PWM and how it is used to score potential binding sites, a brief history of the approaches that have been developed and the types of data that are used with an emphasis on algorithms that we have developed for analyzing high-throughput datasets from several new technologies. It also describes extensions that can be added when the simple PWM model is inadequate and further enhancements that may be necessary. It briefly describes some applications of PWMs in the discovery and modeling of
Much of our current knowledge of biology has been constructed based on population-average measurements. However, advances in single-cell analysis have demonstrated the omnipresent nature of cell-to-cell variability in any population. On one hand, tremendous efforts have been made to examine how such variability arises, how it is regulated by cellular networks, and how it can affect cell-fate decisions by single cells. On the other hand, recent studies suggest that the variability may carry valuable information that can facilitate the elucidation of underlying regulatory networks or the classification of cell states. To this end, a major challenge is determining what aspects of variability bear significant biological meaning. Addressing this challenge requires the development of new computational tools, in conjunction with appropriately chosen experimental platforms, to more effectively describe and interpret data on cell-cell variability. Here, we discuss examples of when population heterogeneity plays critical roles in determining biologically and clinically significant phenotypes, how it serves as a rich information source of regulatory mechanisms, and how we can extract such information to gain a deeper understanding of biological systems.
The concept of “systems biology” is raised by Hood in 1999. It means studying all components with a systematic view. Systems biomedicine is the application of systems biology in medicine. It studies all components in a whole system and aims to reveal the patho-physiologic mechanisms of disease. In recent years, with the development of both theory and technology, systems biomedicine has become feasible and popular. In this review, we will talk about applications of some methods of omics in systems biomedicine, including genomics, metabolomics (proteomics, lipidomics, glycomics), and epigenomics. We will particularly talk about microbiomics and omics for common diseases, two fields which are developed rapidly recently. We also give some bioinformatics related methods and databases which are used in the field of systems biomedicine. At last, some examples that illustrate the whole biological system will be given, and development for systems biomedicine in China and the prospect for systems biomedicine will be talked about.
Understanding how chromosomes fold provides insights into the transcription regulation, hence, the functional state of the cell. Using the next generation sequencing technology, the recently developed Hi-C approach enables a global view of spatial chromatin organization in the nucleus, which substantially expands our knowledge about genome organization and function. However, due to multiple layers of biases, noises and uncertainties buried in the protocol of Hi-C experiments, analyzing and interpreting Hi-C data poses great challenges, and requires novel statistical methods to be developed. This article provides an overview of recent Hi-C studies and their impacts on biomedical research, describes major challenges in statistical analysis of Hi-C data, and discusses some perspectives for future research.