Systems biomedicine: It’s your turn —Recent progress in systems biomedicine

Zhuqin Zhang , Zhiguo Zhao , Bing Liu , Dongguo Li , Dandan Zhang , Houzao Chen , Depei Liu

Quant. Biol. ›› 2013, Vol. 1 ›› Issue (2) : 140 -155.

PDF (257KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (2) : 140 -155. DOI: 10.1007/s40484-013-0009-z
REVIEW
REVIEW

Systems biomedicine: It’s your turn —Recent progress in systems biomedicine

Author information +
History +
PDF (257KB)

Abstract

The concept of “systems biology” is raised by Hood in 1999. It means studying all components with a systematic view. Systems biomedicine is the application of systems biology in medicine. It studies all components in a whole system and aims to reveal the patho-physiologic mechanisms of disease. In recent years, with the development of both theory and technology, systems biomedicine has become feasible and popular. In this review, we will talk about applications of some methods of omics in systems biomedicine, including genomics, metabolomics (proteomics, lipidomics, glycomics), and epigenomics. We will particularly talk about microbiomics and omics for common diseases, two fields which are developed rapidly recently. We also give some bioinformatics related methods and databases which are used in the field of systems biomedicine. At last, some examples that illustrate the whole biological system will be given, and development for systems biomedicine in China and the prospect for systems biomedicine will be talked about.

“

Cite this article

Download citation ▾
Zhuqin Zhang, Zhiguo Zhao, Bing Liu, Dongguo Li, Dandan Zhang, Houzao Chen, Depei Liu. Systems biomedicine: It’s your turn —Recent progress in systems biomedicine. Quant. Biol., 2013, 1(2): 140-155 DOI:10.1007/s40484-013-0009-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ideker, T., Galitski, T. and Hood,L. (2001) A new approach to decoding life: systems biology. Annu. Rev. Genomics. Hum. Genet., 2, 343–372

[2]

Kamada, T. (1992) System biomedicine: a new paradigm in biomedical engineering. Front. Med. Biol. Eng., 4, 1–2

[3]

Zeng, B. Z. (1992) On the holographic model of human body. in 1st National Conference of Comparative Studies Traditional Chinese Medicine and West Medicine (Medicine and Philosophy, Guangzhou, April 1992).

[4]

National Human Genome Research Institute (2010–11–08). FAQ About Genetic and Genomic Science. Genome.gov. Retrieved 2011–12–03.

[5]

Pearson, T. A. and Manolio, T. A. (2008) How to interpret a genome-wide association study. JAMA, 299, 1335–1344

[6]

Risch,N. and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science, 273, 1516–1517

[7]

Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J. Y., Sackler, R. S., Haynes, C., Henning, A. K., SanGiovanni, J. P., Mane, S. M., Mayne, S. T., et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science, 308, 385–389

[8]

Dewan, A., Liu, M., Hartman, S., Zhang, S. S., Liu, D. T., Zhao, C., Tam, P. O., Chan, W. M., Lam, D. S., Snyder, M., et al. (2006) HTRA1 promoter polymorphism in wet age-related macular degeneration. Science, 314, 989–992

[9]

Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678

[10]

Uda, M., Galanello, R., Sanna, S., Lettre, G., Sankaran, V. G., Chen, W., Usala, G., Busonero, F., Maschio, A., Albai, G., et al. (2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. U.S.A., 105, 1620–1625

[11]

Lettre, G., Sankaran, V. G., Bezerra, M. A., Araújo, A. S., Uda, M., Sanna, S., Cao, A., Schlessinger, D., Costa, F. F., Hirschhorn, J. N., et al. (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl. Acad. Sci. U.S.A., 105, 11869–11874

[12]

Sankaran, V. G., Menne, T. F., Xu, J., Akie, T. E., Lettre, G., Van Handel, B., Mikkola, H. K., Hirschhorn, J. N., Cantor, A. B. and Orkin, S. H. (2008) Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science, 322, 1839–1842

[13]

Sankaran, V. G., Xu, J., Ragoczy, T., Ippolito, G. C., Walkley, C. R., Maika, S. D., Fujiwara, Y., Ito, M., Groudine, M., Bender, M. A., et al. (2009) Developmental and species-divergent globin switching are driven by BCL11A. Nature, 460, 1093–1097

[14]

Ng, S. B., Nickerson, D. A., Bamshad, M. J. and Shendure, J. (2010) Massively parallel sequencing and rare disease. Hum. Mol. Genet., 19, R119–R124

[15]

Gilissen, C., Hoischen, A., Brunner, H. G. and Veltman, J. A. (2011) Unlocking Mendelian disease using exome sequencing. Genome Biol., 12, 228

[16]

Bamshad, M. J., Ng, S. B., Bigham, A. W., Tabor, H. K., Emond, M. J., Nickerson, D. A. and Shendure, J. (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet., 12, 745–755

[17]

Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., Huff, C. D., Shannon, P. T., Jabs, E. W., Nickerson, D. A., et al. (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet., 42, 30–35

[18]

Hoischen, A., van Bon, B. W., Gilissen, C., Arts, P., van Lier, B., Steehouwer, M., de Vries, P., de Reuver, R., Wieskamp, N., Mortier, G., et al. (2010) De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet., 42, 483–485

[19]

Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I., Beck, A. E., Tabor, H. K., Cooper, G. M., Mefford, H. C., et al. (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet., 42, 790–793

[20]

Hoischen, A., van Bon, B. W., Rodríguez-Santiago, B., Gilissen, C., Vissers, L. E., de Vries, P., Janssen, I., van Lier, B., Hastings, R., Smithson, S. F., et al. (2011) De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat. Genet., 43, 729–731

[21]

Kathiresan, S., Voight, B. F., Purcell, S., Musunuru, K., Ardissino, D., Mannucci, P. M., Anand, S., Engert, J. C., Samani, N. J., Schunkert, H., et al., and the Myocardial Infarction Genetics Consortium, and the Wellcome Trust Case Control Consortium. (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet., 41, 334–341

[22]

McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., Hinds, D. A., Pennacchio, L. A., Tybjaerg-Hansen, A., Folsom, A. R., et al. (2007) A common allele on chromosome 9 associated with coronary heart disease. Science, 316, 1488–1491

[23]

O’Donnell, C. J. and Nabel, E. G. (2011) Genomics of cardiovascular disease. N. Engl. J. Med., 365, 2098–2109

[24]

Samani, N. J., Erdmann, J., Hall, A. S., Hengstenberg, C., Mangino, M., Mayer, B., Dixon, R. J., Meitinger, T., Braund, P., Wichmann, H. E., et al., and the WTCCC and the Cardiogenics Consortium. (2007) Genomewide association analysis of coronary artery disease. N. Engl. J. Med., 357, 443–453

[25]

Coronary Artery Disease (C4D) Genetics Consortium. (2011) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet., 43, 339–344

[26]

Schunkert, H., König, I. R., Kathiresan, S., Reilly, M. P., Assimes, T. L., Holm, H., Preuss, M., Stewart, A. F., Barbalic, M., Gieger, C., et al., and the Cardiogenics, and the CARDIoGRAM Consortium. (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet., 43, 333–338

[27]

Takeuchi, F., Yokota, M., Yamamoto, K., Nakashima, E., Katsuya, T., Asano, H., Isono, M., Nabika, T., Sugiyama, T., Fujioka, A., et al. (2012) Genome-wide association study of coronary artery disease in the Japanese. Eur. J. Hum. Genet., 20, 333–340

[28]

Wild, P. S., Zeller, T., Schillert, A., Szymczak, S., Sinning, C. R., Deiseroth, A., Schnabel, R. B., Lubos, E., Keller, T., Eleftheriadis, M. S., et al. (2011) A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease. Circ. Cardiovasc. Genet., 4, 403–412

[29]

Slavin, T. P., Feng, T., Schnell, A., Zhu, X. and Elston, R. C. (2011) Two-marker association tests yield new disease associations for coronary artery disease and hypertension. Hum. Genet., 130, 725–733

[30]

Jarinova, O., Stewart, A. F., Roberts, R., Wells, G., Lau, P., Naing, T., Buerki, C., McLean, B. W., Cook, R. C., Parker, J. S., et al. (2009) Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler. Thromb. Vasc. Biol., 29, 1671–1677

[31]

Visel, A., Zhu, Y., May, D., Afzal, V., Gong, E., Attanasio, C., Blow, M. J., Cohen, J. C., Rubin, E. M. and Pennacchio, L. A. (2010) Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature, 464, 409–412

[32]

Harismendy, O., Notani, D., Song, X., Rahim, N. G., Tanasa, B., Heintzman, N., Ren, B., Fu, X. D., Topol, E. J., Rosenfeld, M. G., et al. (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature, 470, 264–268

[33]

Lu, X., Wang, L., Chen, S., He, L., Yang, X., Shi, Y., Cheng, J., Zhang, L., Gu, C. C., Huang, J., et al., and the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Consortium. (2012) Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat. Genet., 44, 890–894

[34]

Levy, D., Larson, M. G., Benjamin, E. J., Newton-Cheh, C., Wang, T. J., Hwang, S. J., Vasan, R. S. and Mitchell, G. F. (2007) Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med. Genet., 8, S3

[35]

Newton-Cheh, C., Johnson, T., Gateva, V., Tobin, M. D., Bochud, M., Coin,L., Najjar, S. S., Zhao, J. H., Heath, S. C., Eyheramendy, S., et al., and the Wellcome Trust Case Control Consortium. (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet., 41, 666–676

[36]

Levy, D., Ehret, G. B., Rice, K., Verwoert, G. C., Launer, L. J., Dehghan, A., Glazer, N. L., Morrison, A. C., Johnson, A. D., Aspelund, T., et al. (2009) Genome-wide association study of blood pressure and hypertension. Nat. Genet., 41, 677–687

[37]

Wain, L. V., Verwoert, G. C., O’Reilly, P. F., Shi, G., Johnson, T., Johnson, A. D., Bochud, M., Rice, K. M., Henneman, P., Smith, A. V., et al., and the LifeLines Cohort Study, and the EchoGen consortium, and the AortaGen Consortium, and the CHARGE Consortium Heart Failure Working Group, and the KidneyGen consortium, and the CKDGen consortium, and the Cardiogenics consortium, and the CardioGram. (2011) Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet., 43, 1005–1011

[38]

Cho, Y. S., Go, M. J., Kim, Y. J., Heo, J. Y., Oh, J. H., Ban, H. J., Yoon, D., Lee, M. H., Kim, D. J., Park, M., et al. (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet., 41, 527–534

[39]

Delles, C. and Padmanabhan, S. (2012) Genetics and hypertension: is it time to change my practice? Can. J. Cardiol., 28, 296–304

[40]

Schumacher, F. R., Berndt, S. I., Siddiq, A., Jacobs, K. B., Wang, Z., Lindstrom, S., Stevens, V. L., Chen, C., Mondul, A. M., Travis, R. C., et al. (2011) Genome-wide association study identifies new prostate cancer susceptibility loci. Hum. Mol. Genet., 20, 3867–3875

[41]

Sanson, M., Hosking, F. J., Shete, S., Zelenika, D., Dobbins, S. E., Ma, Y., Enciso-Mora, V., Idbaih, A., Delattre, J. Y., Hoang-Xuan, K., et al. (2011) Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum. Mol. Genet., 20, 2897–2904

[42]

Fletcher, O., Johnson, N., Orr, N., Hosking, F. J., Gibson, L. J., Walker, K., Zelenika, D., Gut, I., Heath, S., Palles, C., et al. (2011) Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J. Natl. Cancer Inst., 103, 425–435

[43]

Cui, R., Okada, Y., Jang, S. G., Ku, J. L., Park, J. G., Kamatani, Y., Hosono, N., Tsunoda, T., Kumar, V., Tanikawa, C., et al. (2011) Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut, 60, 799–805

[44]

Rothman, N., Garcia-Closas, M., Chatterjee, N., Malats, N., Wu, X., Figueroa, J. D., Real, F. X., Van Den Berg, D., Matullo, G., Baris, D., et al. (2010) A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat. Genet., 42, 978–984

[45]

Goode, E. L., Chenevix-Trench, G., Song, H., Ramus, S. J., Notaridou, M., Lawrenson, K., Widschwendter, M., Vierkant, R. A., Larson, M. C., Kjaer, S. K., et al., and the Wellcome Trust Case-Control Consortium, and the Australian Cancer Study (Ovarian Cancer), and the Australian Ovarian Cancer Study Group, and the Ovarian Cancer Association Consortium (OCAC), and the Ovarian Cancer Association Consortium (OCAC). (2010) A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat. Genet., 42, 874–879

[46]

Low, S. K., Kuchiba, A., Zembutsu, H., Saito, A., Takahashi, A., Kubo, M., Daigo, Y., Kamatani, N., Chiku, S., Totsuka, H., et al. (2010) Genome-wide association study of pancreatic cancer in Japanese population. PLoS ONE, 5, e11824

[47]

Weedon, M. N., Clark, V. J., Qian, Y., Ben-Shlomo, Y., Timpson, N., Ebrahim, S., Lawlor, D. A., Pembrey, M. E., Ring, S., Wilkin, T. J., et al. (2006) A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses. Am. J. Hum. Genet., 79, 991–1001

[48]

McCarthy, M. I. (2010) Genomics, type 2 diabetes, and obesity. N. Engl. J. Med., 363, 2339–2350

[49]

Kooner, J. S., Saleheen, D., Sim, X., Sehmi, J., Zhang, W., Frossard, P., Been, L. F., Chia, K. S., Dimas, A. S., Hassanali, N., et al., and the DIAGRAM, and the MuTHER. (2011) Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet., 43, 984–989

[50]

Yamauchi, T., Hara, K., Maeda, S., Yasuda, K., Takahashi, A., Horikoshi, M., Nakamura, M., Fujita, H., Grarup, N., Cauchi, S., et al. (2010) A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat. Genet., 42, 864–868

[51]

Shu, X. O., Long, J., Cai, Q., Qi, L., Xiang, Y. B., Cho, Y. S., Tai, E. S., Li, X., Lin, X., Chow, W. H., et al. (2010) Identification of new genetic risk variants for type 2 diabetes. PLoS Genet., 6

[52]

Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7–24

[53]

National Human Genome Research Institute. A Catalog of Published Genome-Wide Association Studies.

[54]

The Pharmacogenomics Knowledge Base.

[55]

Literature analysis by R. Ranganathan and C. Woods.

[56]

Collins, F. S. (2011) Reengineering translational science: the time is right. Sci. Transl. Med., 3, 90cm17

[57]

The ENCODE Project Consortium. (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306, 636–640

[58]

Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F., Epstein, C. B., Frietze, S., Harrow, J., Kaul, R., et al., and the ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74

[59]

Patti, G. J., Yanes, O. and Siuzdak, G. (2012) Innovation: Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol., 13, 263–269

[60]

Blackstock, W. P. and Weir, M. P. (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol., 17, 121–127

[61]

Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature, 340, 245–246

[62]

Yu, H., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science, 322, 104–110

[63]

Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., Ding, H., Koh, J. L., Toufighi, K., Mostafavi, S., et al. (2010) The genetic landscape of a cell. Science, 327, 425–431

[64]

Gandhi, T. K., Zhong, J., Mathivanan, S., Karthick, L., Chandrika, K. N., Mohan, S. S., Sharma, S., Pinkert, S., Nagaraju, S., Periaswamy, B., et al. (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat. Genet., 38, 285–293

[65]

Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabási, A. L. (2007) The human disease network. Proc. Natl. Acad. Sci. U.S.A., 104, 8685–8690

[66]

Oti, M., Snel, B., Huynen, M. A. and Brunner, H. G. (2006) Predicting disease genes using protein-protein interactions. J. Med. Genet., 43, 691–698

[67]

Xu, J. and Li, Y. (2006) Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics, 22, 2800–2805

[68]

Wenk, M. R. (2010) Lipidomics: new tools and applications. Cell, 143, 888–895

[69]

Thomas, A., Lenglet, S., Chaurand, P., Deglon, J., Mangin, P., Mach, F., Steffens, S., Wolfender, J. L. and Staub, C. (2011) Mass spectrometry for the evaluation of cardiovascular diseases based on proteomics and lipidomics. Thromb. Haemost., 106, 20–33

[70]

Shevchenko, A. and Simons, K. (2010) Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol., 11, 593–598

[71]

Quehenberger, O., Armando, A. M., Brown, A. H., Milne, S. B., Myers, D. S., Merrill, A. H., Bandyopadhyay, S., Jones, K. N., Kelly, S., Shaner, R. L., et al. (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res., 51, 3299–3305

[72]

Kannel, W. B., Dawber, T. R., Kagan, A., Revotskie, N. and Stokes, J. 3rd. (1961) Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann. Intern. Med., 55, 33–50

[73]

Pilia, G., Chen, W. M., Scuteri, A., Orrú M., Albai, G., Dei, M., Lai, S., Usala, G., Lai, M., Loi, P., et al. (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet., 2, e132

[74]

Stegemann, C., Drozdov, I., Shalhoub, J., Humphries, J., Ladroue, C., Didangelos, A., Baumert, M., Allen, M., Davies, A. H., Monaco, C., et al. (2011) Comparative lipidomics profiling of human atherosclerotic plaques. Circ. Cardiovasc. Genet., 4, 232–242

[75]

Meikle, P. J., Wong, G., Tsorotes, D., Barlow, C. K., Weir, J. M., Christopher, M. J., MacIntosh, G. L., Goudey, B., Stern, L., Kowalczyk, A., et al. (2011) Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 31, 2723–2732

[76]

Yetukuri, L., Katajamaa, M., Medina-Gomez, G., Seppänen-Laakso, T., Vidal-Puig, A. and Oresic, M. (2007) Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst. Biol., 1, 12

[77]

Kaddurah-Daouk, R., Baillie, R. A., Zhu, H., Zeng, Z. B., Wiest, M. M., Nguyen, U. T., Watkins, S. M. and Krauss, R. M. (2010) Lipidomic analysis of variation in response to simvastatin in the Cholesterol and Pharmacogenetics Study. Metabolomics, 6, 191–201

[78]

Cobbold, J. F., Patel, J. H., Goldin, R. D., North, B. V., Crossey, M. M., Fitzpatrick, J., Wylezinska, M., Thomas, H. C., Cox, I. J. and Taylor-Robinson, S. D. (2010) Hepatic lipid profiling in chronic hepatitis C: an in vitro and in vivo proton magnetic resonance spectroscopy study. J. Hepatol., 52, 16–24

[79]

Wu, H., Volponi, J. V., Oliver, A. E., Parikh, A. N., Simmons, B. A. and Singh, S. (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A., 108, 3809–3814

[80]

Bertozzi, C. R. and Sasisekharan, R. (2009) Glycomics. In: Varki, A., (eds). Essentials of Glycobiology. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, Chapter 48.

[81]

Hart, G. W. and Copeland, R. J. (2010) Glycomics hits the big time. Cell, 143, 672–676

[82]

Villoslada, P. and Baranzini, S. (2012) Data integration and systems biology approaches for biomarker discovery: challenges and opportunities for multiple sclerosis. J. Neuroimmunol., 248, 58–65

[83]

An, H. J., Kronewitter, S. R., de Leoz, M. L. and Lebrilla, C. B. (2009) Glycomics and disease markers. Curr. Opin. Chem. Biol., 13, 601– 607

[84]

Angata, T., Fujinawa, R., Kurimoto, A., Nakajima, K., Kato, M., Takamatsu, S., Korekane, H., Gao, C. X., Ohtsubo, K., Kitazume, S., et al. (2012) Integrated approach toward the discovery of glyco-biomarkers of inflammation-related diseases. Ann. N. Y. Acad. Sci., 1253, 159–169

[85]

Callewaert, N., Van Vlierberghe, H., Van Hecke, A., Laroy, W., Delanghe, J. and Contreras, R. (2004) Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics. Nat. Med., 10, 429–434

[86]

Taylor, A. D., Hancock, W. S., Hincapie, M., Taniguchi, N. and Hanash, S. M. (2009) Towards an integrated proteomic and glycomic approach to finding cancer biomarkers. Genome Med., 1, 57

[87]

Maunakea, A. K., Chepelev, I. and Zhao, K. (2010) Epigenome mapping in normal and disease States. Circ. Res., 107, 327–339

[88]

American Association for Cancer Research Human Epigenome Task Force, and the European Union, Network of Excellence, Scientific Advisory Board. (2008) Moving AHEAD with an international human epigenome project. Nature, 454, 711–715

[89]

Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev., 16, 6–21

[90]

Robertson, K. D. (2005) DNA methylation and human disease. Nat. Rev. Genet., 6, 597–610

[91]

Feinberg, A. P. and Tycko, B. (2004) The history of cancer epigenetics. Nat. Rev. Cancer, 4, 143–153

[92]

Widschwendter, M., Jiang, G., Woods, C., Müller, H. M., Fiegl, H., Goebel, G., Marth, C., Müller-Holzner, E., Zeimet, A. G., Laird, P. W., et al. (2004) DNA hypomethylation and ovarian cancer biology. Cancer Res., 64, 4472–4480

[93]

Zhuang, J., Peng, W., Li, H., Wang, W., Wei, Y., Li, W. and Xu, Y. (2012) Methylation of p15INK4b and expression of ANRIL on chromosome 9p21 are associated with coronary artery disease. PLoS ONE, 7, e47193

[94]

Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., et al. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897–903

[95]

Wang, Y., Fischle, W., Cheung, W., Jacobs, S., Khorasanizadeh, S. and Allis, C. D. (2004) Beyond the double helix: writing and reading the histone code. Novartis Found. Symp., 259, 3–17, (discussion 17– 21, 163–169).

[96]

Suh, Y. A., Lee, H. Y., Virmani, A., Wong, J., Mann, K. K., Miller, W. H. Jr, Gazdar, A. and Kurie, J. M. (2002) Loss of retinoic acid receptor beta gene expression is linked to aberrant histone H3 acetylation in lung cancer cell lines. Cancer Res., 62, 3945–3949

[97]

Fraga, M. F. and Esteller, M. (2005) Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle, 4, 1377–1381

[98]

Zhang, X., Zhao, X., Fiskus, W., Lin, J., Lwin, T., Rao, R., Zhang, Y., Chan, J. C., Fu, K., Marquez, V. E., et al. (2012) Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell, 22, 506–523

[99]

Park, J. H., Stoffers, D. A., Nicholls, R. D. and Simmons, R. A. (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest., 118, 2316–2324

[100]

Pinney, S. E. and Simmons, R. A. (2010) Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol. Metab., 21, 223–229

[101]

Sommer, B., Köhler, M., Sprengel, R. and Seeburg, P. H. (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell, 67, 11–19

[102]

Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E. and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149, 1635–1646

[103]

O’Neil, R. T. and Emeson, R. B. (2012) Quantitative analysis of 5HT(2C) receptor RNA editing patterns in psychiatric disorders. Neurobiol. Dis., 45, 8–13

[104]

Taft, R. J., Pang, K. C., Mercer, T. R., Dinger, M. and Mattick, J. S. (2010) Non-coding RNAs: regulators of disease. J. Pathol., 220, 126–139

[105]

Esteller, M. (2011) Non-coding RNAs in human disease. Nat. Rev. Genet., 12, 861–874

[106]

Yap, K. L., Li, S., Muñoz-Cabello, A. M., Raguz, S., Zeng, L., Mujtaba, S., Gil, J., Walsh, M. J. and Zhou, M. M. (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell, 38, 662–674

[107]

Faghihi, M. A., Modarresi, F., Khalil, A. M., Wood, D. E., Sahagan, B. G., Morgan, T. E., Finch, C. E., St Laurent, G. 3rd, Kenny, P. J. and Wahlestedt, C. (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med., 14, 723–730

[108]

Rowles, J., Wong, M., Powers, R. and Olsen, M. (2012) FTO, RNA epigenetics and epilepsy. Epigenetics, 7, 1094–1097

[109]

Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W. and Cui, Q. (2008) An analysis of human microRNA and disease associations. PLoS ONE, 3, e3420

[110]

Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., et al. (2005) MicroRNA expression profiles classify human cancers. Nature, 435, 834–838

[111]

Li, C., Pei, F., Zhu, X., Duan, D. D. and Zeng, C. (2012) Circulating microRNAs as novel and sensitive biomarkers of acute myocardial infarction. Clin. Biochem., 45, 727–732

[112]

Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., et al. (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984

[113]

Beltrao, P., Albanèse, V., Kenner, L. R., Swaney, D. L., Burlingame, A., Villén, J., Lim, W. A., Fraser, J. S., Frydman, J. and Krogan, N. J. (2012) Systematic functional prioritization of protein posttranslational modifications. Cell, 150, 413–425

[114]

Grasbon-Frodl, E., Lorenz, H., Mann, U., Nitsch, R. M., Windl, O. and Kretzschmar, H. A. (2004) Loss of glycosylation associated with the T183A mutation in human prion disease. Acta Neuropathol., 108, 476–484

[115]

Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., et al. (1981) Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465

[116]

Mercer, T. R., Neph, S., Dinger, M. E., Crawford, J., Smith, M. A., Shearwood, A. M., Haugen, E., Bracken, C. P., Rackham, O., Stamatoyannopoulos, J. A., et al. (2011) The human mitochondrial transcriptome. Cell, 146, 645–658

[117]

Taylor, R. W. and Turnbull, D. M. (2005) Mitochondrial DNA mutations in human disease. Nat. Rev. Genet., 6, 389–402

[118]

Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet., 34, 267–273

[119]

Petersen, K. F., Befroy, D., Dufour, S., Dziura, J., Ariyan, C., Rothman, D. L., DiPietro, L., Cline, G. W. and Shulman, G. I. (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science, 300, 1140–1142

[120]

Sobenin, I. A., Sazonova, M. A., Ivanova, M. M., Zhelankin, A. V., Myasoedova, V. A., Postnov, A. Y., Nurbaev, S. D., Bobryshev, Y. V. and Orekhov, A. N. (2012) Mutation C3256T of mitochondrial genome in white blood cells: novel genetic marker of atherosclerosis and coronary heart disease. PLoS ONE, 7, e46573

[121]

Relman, D. A. (2012) Microbiology: learning about who we are. Nature, 486, 194–195

[122]

Human Microbiome Project Consortium. (2012) A framework for human microbiome research. Nature, 486, 215–221

[123]

Relman, D. A. (2012) The human microbiome: ecosystem resilience and health. Nutr. Rev., 70, S2–S9

[124]

Ursell, L. K., Metcalf, J. L., Parfrey, L. W. and Knight, R. (2012) Defining the human microbiome. Nutr. Rev., 70, S38–S44

[125]

McNiven, E. M., German, J. B. and Slupsky, C. M. (2011) Analytical metabolomics: nutritional opportunities for personalized health. J. Nutr. Biochem., 22, 995–1002

[126]

Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., et al. (2012) Human gut microbiome viewed across age and geography. Nature, 486, 222–227

[127]

Human Microbiome Project Consortium. (2012) Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214

[128]

Burcelin, R. (2012) Regulation of metabolism: a cross talk between gut microbiota and its human host. Physiology (Bethesda), 27, 300–307

[129]

Coons, M. J., Demott, A., Buscemi, J., Duncan, J. M., Pellegrini, C. A., Steglitz, J., Pictor, A. and Spring, B. (2012) Technology interventions to curb obesity: a systematic review of the current literature. Curr. Cardiovasc. Risk Rep., 6, 120–134

[130]

Kahrstrom, C. T. (2012) Microbiome: gut microbiome as a marker for diabetes. Nat. Rev. Microbiol., 10, 733.

[131]

Burcelin, R., Garidou, L. and Pomié C. (2012) Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin. Immunol., 24, 67–74

[132]

Greiner, T. and Bäckhed, F. (2011) Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol. Metab., 22, 117–123

[133]

Azad, M. B. and Kozyrskyj, A. L. (2012) Perinatal programming of asthma: the role of gut microbiota. Clin. Dev. Immunol., 2012, 932072

[134]

Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., Feldstein, A. E., Britt, E. B., Fu, X., Chung, Y. M., et al. (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63

[135]

Harris, K., Kassis, A., Major, G. and Chou, C. J. (2012) Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes., 2012, 879151

[136]

Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., Reynolds, A. P., Sandstrom, R., Qu, H., Brody, J., et al. (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science, 337, 1190–1195

[137]

Torkamani, A., Topol, E. J. and Schork, N. J. (2008) Pathway analysis of seven common diseases assessed by genome-wide association. Genomics, 92, 265–272

[138]

Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., Pahwa, J. S., Moskvina, V., Dowzell, K., Williams, A., et al. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet., 41, 1088–1093

[139]

Chen, F., Chen, G. K., Stram, D. O., Millikan, R. C., Ambrosone, C. B., John, E. M., Bernstein, L., Zheng, W., Palmer, J. R., Hu, J. J., et al. (2013) A genome-wide association study of breast cancer in women of African ancestry. Hum. Genet., 132, 39–48

[140]

Yeager, M., Chatterjee, N., Ciampa, J., Jacobs, K. B., Gonzalez-Bosquet, J., Hayes, R. B., Kraft, P., Wacholder, S., Orr, N., Berndt, S., et al. (2009) Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat. Genet., 41, 1055–1057

[141]

Schnabel, R. B., Baccarelli, A., Lin, H., Ellinor, P. T. and Benjamin, E. J. (2012) Next steps in cardiovascular disease genomic research—sequencing, epigenetics, and transcriptomics. Clin. Chem., 58, 113–126

[142]

Ndiaye, N. C., Azimi Nehzad, M., El Shamieh, S., Stathopoulou, M. G. and Visvikis-Siest, S. (2011) Cardiovascular diseases and genome-wide association studies. Clin. Chim. Acta, 412, 1697–1701

[143]

Rakyan, V. K., Down, T. A., Balding, D. J. and Beck, S. (2011) Epigenome-wide association studies for common human diseases. Nat. Rev. Genet., 12, 529–541

[144]

Bell, C. G. and Beck, S. (2010) The epigenomic interface between genome and environment in common complex diseases. Brief Funct. Genomics, 9, 477–485

[145]

Toyota, M., Suzuki, H., Yamashita, T., Hirata, K., Imai, K., Tokino, T. and Shinomura, Y. (2009) Cancer epigenomics: implications of DNA methylation in personalized cancer therapy. Cancer Sci., 100, 787–791

[146]

Ivanova, T., Zouridis, H., Wu, Y., Cheng, L. L., Tan, I. B., Gopalakrishnan, V., Ooi, C. H., Lee, J., Qin, L., Wu, J., et al. (2013) Integrated epigenomics identifies BMP4 as a modulator of cisplatin sensitivity in gastric cancer. Gut, 62, 22–33

[147]

Ordovás, J. M. and Smith, C. E. (2010) Epigenetics and cardiovascular disease. Nat. Rev. Cardiol., 7, 510–519

[148]

Trojan, H. J. (1975) Eye complications in the long-term treatment with chloroquin. Study carried out in Togo. Rev. Int. Trach. Pathol. Ocul. Trop. Subtrop., 52, 129–137

[149]

Adamski, J. (2012) Genome-wide association studies with metabolomics. Genome Med., 4, 34

[150]

Quinones, M. P. and Kaddurah-Daouk, R. (2009) Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol. Dis., 35, 165–176

[151]

Madsen, R., Lundstedt, T. and Trygg, J. (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal. Chim. Acta, 659, 23–33

[152]

Ashley, E. A., Butte, A. J., Wheeler, M. T., Chen, R., Klein, T. E., Dewey, F. E., Dudley, J. T., Ormond, K. E., Pavlovic, A., Morgan, A. A., et al. (2010) Clinical assessment incorporating a personal genome. Lancet, 375, 1525–1535

[153]

Grayson, B. L., Wang, L. and Aune, T. M. (2011) Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes. Genes Immun., 12, 341–351

[154]

Masood, E. (1999) As consortium plans free SNP map of human genome. Nature. 398, 545–546

[155]

Broeckel, U., Hengstenberg, C., Mayer, B., Holmer, S., Martin, L. J., Comuzzie, A. G., Blangero, J., Nürnberg, P., Reis, A., Riegger, G. A., et al. (2002) A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nat. Genet., 30, 210–214

[156]

Fischer, M., Broeckel, U., Holmer, S., Baessler, A., Hengstenberg, C., Mayer, B., Erdmann, J., Klein, G., Riegger, G., Jacob, H. J., et al. (2005) Distinct heritable patterns of angiographic coronary artery disease in families with myocardial infarction. Circulation, 111, 855–862

[157]

Wichmann, H. E., Gieger, C. and Illig, T., and the MONICA/KORA Study Group. (2005) KORA-gen—resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen, 67, S26–S30

[158]

Xie, L., Weichel, B., Ohm, J. E. and Zhang, K. (2011) An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver. BMC Syst. Biol., 5, S4

[159]

Yi, J. M., et al. (2008) Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res. 68, 8094–8103

[160]

Uhlmann, K., Rohde, K., Zeller, C., Szymas, J., Vogel, S., Marczinek, K., Thiel, G., Nürnberg P. and Laird, P. W. (2003) Distinct methylation profiles of glioma subtypes. Int. J. Cancer, 106, 52–59

[161]

Cancer Genome Atlas Research Network. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068

[162]

Zhang, Y., Lv, J., Liu, H., Zhu, J., Su, J., Wu, Q., Qi, Y., Wang, F. and Li, X. (2010) HHMD: the human histone modification database. Nucleic Acids Res., 38, D149–D154

[163]

Lv, J., Liu, H., Su, J., Wu, X., Liu, H., Li, B., Xiao, X., Wang, F., Wu, Q. and Zhang, Y. (2012) DiseaseMeth: a human disease methylation database. Nucleic Acids Res., 40, D1030–D1035

[164]

Grunau, C., Renault, E., Rosenthal, A. and Roizes, G. (2001) MethDB—a public database for DNA methylation data. Nucleic Acids Res., 29, 270–274

[165]

Grunau, C., Renault, E. and Roizes, G. (2002) DNA Methylation Database “MethDB”: a user guide. J. Nutr., 132, 2435S–2439S

[166]

Amoreira, C., Hindermann, W. and Grunau, C. (2003) An improved version of the DNA Methylation database (MethDB). Nucleic Acids Res., 31, 75–77

[167]

Negre, V. and Grunau, C. (2006) The MethDB DAS server: adding an epigenetic information layer to the human genome. Epigenetics, 1, 101–105

[168]

Down, T. A., Rakyan, V. K., Turner, D. J., Flicek, P., Li, H., Kulesha, E., Gräf, S., Johnson, N., Herrero, J., Tomazou, E. M., et al. (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol., 26, 779–785

[169]

Pattyn, F., Hoebeeck, J., Robbrecht, P., Michels, E., De Paepe, A., Bottu, G., Coornaert, D., Herzog, R., Speleman, F. and Vandesompele, J. (2006) methBLAST and methPrimerDB: web-tools for PCR based methylation analysis. BMC Bioinformatics, 7, 496

[170]

Grunau, C., Schattevoy, R., Mache, N. and Rosenthal, A. (2000) MethTools—a toolbox to visualize and analyze DNA methylation data. Nucleic Acids Res., 28, 1053–1058

[171]

Kumaki, Y., Oda, M. and Okano, M. (2008) QUMA: quantification tool for methylation analysis. Nucleic Acids Res., 36, W170-5

[172]

Bock, C. and Lengauer, T. (2008) Computational epigenetics. Bioinformatics, 24, 1–10

[173]

Su, J., Yan, H., Wei, Y., Liu, H., Liu, H., Wang, F., Lv, J., Wu, Q. and Zhang, Y. (2013) CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res., 41, e4

[174]

Zhang, Y., Liu, H., Lv, J., Xiao, X., Zhu, J., Liu, X., Su, J., Li, X., Wu, Q., Wang, F., et al. (2011) QDMR: a quantitative method for identification of differentially methylated regions by entropy. Nucleic Acids Res., 39, e58

[175]

Li, X., Rao, S., Wang, Y. and Gong, B. (2004) Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Res., 32, 2685–2694

[176]

Li, X., Rao, S., Jiang, W., Li, C., Xiao, Y., Guo, Z., Zhang, Q., Wang, L., Du, L., Li, J., et al. (2006) Discovery of Time-Delayed Gene Regulatory Networks based on temporal gene expression profiling. BMC Bioinformatics, 7, 26

[177]

Zhou, X., Kao, M. C. and Wong, W. H. (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc. Natl. Acad. Sci. U.S.A., 99, 12783–12788

[178]

Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X., et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503–511

[179]

Butte, A. J., Ye, J., Häring, H. U., Stumvoll, M., White, M. F. and Kohane, I. S. (2001) Determining significant fold differences in gene expression analysis. Pac. Symp. Biocomput., 6–17

[180]

Chen, R., Mias, G. I., Li-Pook-Than, J., Jiang, L., Lam, H. Y., Chen, R., Miriami, E., Karczewski, K. J., Hariharan, M., Dewey, F. E., et al. (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 148, 1293–1307

[181]

Chen, L., Zhang, L., Zhao, Y., Xu, L., Shang, Y., Wang, Q., Li, W., Wang, H. and Li, X. (2009) Prioritizing risk pathways: a novel association approach to searching for disease pathways fusing SNPs and pathways. Bioinformatics, 25, 237–242

[182]

Califano, A., Butte, A. J., Friend, S., Ideker, T. and Schadt, E. (2012) Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat. Genet., 44, 841–847

[183]

Li, X., Jiang, W., Li, W., Lian, B., Wang, S., Liao, M., Chen, X., Wang, Y., Lv, Y., Wang, S., et al. (2012) Dissection of human MiRNA regulatory influence to subpathway. Brief. Bioinformatics, 13, 175–186

[184]

Ye, H., Liu, X., Lv, M., Wu, Y., Kuang, S., Gong, J., Yuan, P., Zhong, Z., Li, Q., Jia, H., et al. (2012) MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Nucleic Acids Res., 40, 5201– 5214

[185]

Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G. and Liu, Y. (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res., 37, D98–D104

[186]

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B. Jr, Assad-Garcia, N., Glass, J. I. and Covert, M. W. (2012) A whole-cell computational model predicts phenotype from genotype. Cell, 150, 389–401

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (257KB)

2172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/