Systems biomedicine: It’s your turn —Recent progress in systems biomedicine

Zhuqin Zhang, Zhiguo Zhao, Bing Liu, Dongguo Li, Dandan Zhang, Houzao Chen, Depei Liu

PDF(258 KB)
PDF(258 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (2) : 140-155. DOI: 10.1007/s40484-013-0009-z
REVIEW
REVIEW

Systems biomedicine: It’s your turn —Recent progress in systems biomedicine

Author information +
History +

Abstract

The concept of “systems biology” is raised by Hood in 1999. It means studying all components with a systematic view. Systems biomedicine is the application of systems biology in medicine. It studies all components in a whole system and aims to reveal the patho-physiologic mechanisms of disease. In recent years, with the development of both theory and technology, systems biomedicine has become feasible and popular. In this review, we will talk about applications of some methods of omics in systems biomedicine, including genomics, metabolomics (proteomics, lipidomics, glycomics), and epigenomics. We will particularly talk about microbiomics and omics for common diseases, two fields which are developed rapidly recently. We also give some bioinformatics related methods and databases which are used in the field of systems biomedicine. At last, some examples that illustrate the whole biological system will be given, and development for systems biomedicine in China and the prospect for systems biomedicine will be talked about.

“

Cite this article

Download citation ▾
Zhuqin Zhang, Zhiguo Zhao, Bing Liu, Dongguo Li, Dandan Zhang, Houzao Chen, Depei Liu. Systems biomedicine: It’s your turn —Recent progress in systems biomedicine. Quant. Biol., 2013, 1(2): 140‒155 https://doi.org/10.1007/s40484-013-0009-z

References

[1]
Ideker, T., Galitski, T. and Hood,L. (2001) A new approach to decoding life: systems biology. Annu. Rev. Genomics. Hum. Genet., 2, 343–372
Pubmed
[2]
Kamada, T. (1992) System biomedicine: a new paradigm in biomedical engineering. Front. Med. Biol. Eng., 4, 1–2
Pubmed
[3]
Zeng, B. Z. (1992) On the holographic model of human body. in 1st National Conference of Comparative Studies Traditional Chinese Medicine and West Medicine (Medicine and Philosophy, Guangzhou, April 1992).
[4]
National Human Genome Research Institute (2010–11–08). FAQ About Genetic and Genomic Science. Genome.gov. Retrieved 2011–12–03.
[5]
Pearson, T. A. and Manolio, T. A. (2008) How to interpret a genome-wide association study. JAMA, 299, 1335–1344
Pubmed
[6]
Risch,N. and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science, 273, 1516–1517
Pubmed
[7]
Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J. Y., Sackler, R. S., Haynes, C., Henning, A. K., SanGiovanni, J. P., Mane, S. M., Mayne, S. T., et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science, 308, 385–389
Pubmed
[8]
Dewan, A., Liu, M., Hartman, S., Zhang, S. S., Liu, D. T., Zhao, C., Tam, P. O., Chan, W. M., Lam, D. S., Snyder, M., et al. (2006) HTRA1 promoter polymorphism in wet age-related macular degeneration. Science, 314, 989–992
Pubmed
[9]
Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678
Pubmed
[10]
Uda, M., Galanello, R., Sanna, S., Lettre, G., Sankaran, V. G., Chen, W., Usala, G., Busonero, F., Maschio, A., Albai, G., et al. (2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. U.S.A., 105, 1620–1625
Pubmed
[11]
Lettre, G., Sankaran, V. G., Bezerra, M. A., Araújo, A. S., Uda, M., Sanna, S., Cao, A., Schlessinger, D., Costa, F. F., Hirschhorn, J. N., et al. (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl. Acad. Sci. U.S.A., 105, 11869–11874
Pubmed
[12]
Sankaran, V. G., Menne, T. F., Xu, J., Akie, T. E., Lettre, G., Van Handel, B., Mikkola, H. K., Hirschhorn, J. N., Cantor, A. B. and Orkin, S. H. (2008) Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science, 322, 1839–1842
Pubmed
[13]
Sankaran, V. G., Xu, J., Ragoczy, T., Ippolito, G. C., Walkley, C. R., Maika, S. D., Fujiwara, Y., Ito, M., Groudine, M., Bender, M. A., et al. (2009) Developmental and species-divergent globin switching are driven by BCL11A. Nature, 460, 1093–1097
Pubmed
[14]
Ng, S. B., Nickerson, D. A., Bamshad, M. J. and Shendure, J. (2010) Massively parallel sequencing and rare disease. Hum. Mol. Genet., 19, R119–R124
Pubmed
[15]
Gilissen, C., Hoischen, A., Brunner, H. G. and Veltman, J. A. (2011) Unlocking Mendelian disease using exome sequencing. Genome Biol., 12, 228
Pubmed
[16]
Bamshad, M. J., Ng, S. B., Bigham, A. W., Tabor, H. K., Emond, M. J., Nickerson, D. A. and Shendure, J. (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet., 12, 745–755
Pubmed
[17]
Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., Huff, C. D., Shannon, P. T., Jabs, E. W., Nickerson, D. A., et al. (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet., 42, 30–35
Pubmed
[18]
Hoischen, A., van Bon, B. W., Gilissen, C., Arts, P., van Lier, B., Steehouwer, M., de Vries, P., de Reuver, R., Wieskamp, N., Mortier, G., et al. (2010) De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet., 42, 483–485
Pubmed
[19]
Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I., Beck, A. E., Tabor, H. K., Cooper, G. M., Mefford, H. C., et al. (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet., 42, 790–793
Pubmed
[20]
Hoischen, A., van Bon, B. W., Rodríguez-Santiago, B., Gilissen, C., Vissers, L. E., de Vries, P., Janssen, I., van Lier, B., Hastings, R., Smithson, S. F., et al. (2011) De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat. Genet., 43, 729–731
Pubmed
[21]
Kathiresan, S., Voight, B. F., Purcell, S., Musunuru, K., Ardissino, D., Mannucci, P. M., Anand, S., Engert, J. C., Samani, N. J., Schunkert, H., et al., and the Myocardial Infarction Genetics Consortium, and the Wellcome Trust Case Control Consortium. (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet., 41, 334–341
Pubmed
[22]
McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., Hinds, D. A., Pennacchio, L. A., Tybjaerg-Hansen, A., Folsom, A. R., et al. (2007) A common allele on chromosome 9 associated with coronary heart disease. Science, 316, 1488–1491
Pubmed
[23]
O’Donnell, C. J. and Nabel, E. G. (2011) Genomics of cardiovascular disease. N. Engl. J. Med., 365, 2098–2109
Pubmed
[24]
Samani, N. J., Erdmann, J., Hall, A. S., Hengstenberg, C., Mangino, M., Mayer, B., Dixon, R. J., Meitinger, T., Braund, P., Wichmann, H. E., et al., and the WTCCC and the Cardiogenics Consortium. (2007) Genomewide association analysis of coronary artery disease. N. Engl. J. Med., 357, 443–453
Pubmed
[25]
Coronary Artery Disease (C4D) Genetics Consortium. (2011) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet., 43, 339–344
Pubmed
[26]
Schunkert, H., König, I. R., Kathiresan, S., Reilly, M. P., Assimes, T. L., Holm, H., Preuss, M., Stewart, A. F., Barbalic, M., Gieger, C., et al., and the Cardiogenics, and the CARDIoGRAM Consortium. (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet., 43, 333–338
Pubmed
[27]
Takeuchi, F., Yokota, M., Yamamoto, K., Nakashima, E., Katsuya, T., Asano, H., Isono, M., Nabika, T., Sugiyama, T., Fujioka, A., et al. (2012) Genome-wide association study of coronary artery disease in the Japanese. Eur. J. Hum. Genet., 20, 333–340
Pubmed
[28]
Wild, P. S., Zeller, T., Schillert, A., Szymczak, S., Sinning, C. R., Deiseroth, A., Schnabel, R. B., Lubos, E., Keller, T., Eleftheriadis, M. S., et al. (2011) A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease. Circ. Cardiovasc. Genet., 4, 403–412
Pubmed
[29]
Slavin, T. P., Feng, T., Schnell, A., Zhu, X. and Elston, R. C. (2011) Two-marker association tests yield new disease associations for coronary artery disease and hypertension. Hum. Genet., 130, 725–733
Pubmed
[30]
Jarinova, O., Stewart, A. F., Roberts, R., Wells, G., Lau, P., Naing, T., Buerki, C., McLean, B. W., Cook, R. C., Parker, J. S., et al. (2009) Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler. Thromb. Vasc. Biol., 29, 1671–1677
Pubmed
[31]
Visel, A., Zhu, Y., May, D., Afzal, V., Gong, E., Attanasio, C., Blow, M. J., Cohen, J. C., Rubin, E. M. and Pennacchio, L. A. (2010) Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature, 464, 409–412
Pubmed
[32]
Harismendy, O., Notani, D., Song, X., Rahim, N. G., Tanasa, B., Heintzman, N., Ren, B., Fu, X. D., Topol, E. J., Rosenfeld, M. G., et al. (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature, 470, 264–268
Pubmed
[33]
Lu, X., Wang, L., Chen, S., He, L., Yang, X., Shi, Y., Cheng, J., Zhang, L., Gu, C. C., Huang, J., et al., and the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Consortium. (2012) Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat. Genet., 44, 890–894
Pubmed
[34]
Levy, D., Larson, M. G., Benjamin, E. J., Newton-Cheh, C., Wang, T. J., Hwang, S. J., Vasan, R. S. and Mitchell, G. F. (2007) Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med. Genet., 8, S3
Pubmed
[35]
Newton-Cheh, C., Johnson, T., Gateva, V., Tobin, M. D., Bochud, M., Coin,L., Najjar, S. S., Zhao, J. H., Heath, S. C., Eyheramendy, S., et al., and the Wellcome Trust Case Control Consortium. (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet., 41, 666–676
Pubmed
[36]
Levy, D., Ehret, G. B., Rice, K., Verwoert, G. C., Launer, L. J., Dehghan, A., Glazer, N. L., Morrison, A. C., Johnson, A. D., Aspelund, T., et al. (2009) Genome-wide association study of blood pressure and hypertension. Nat. Genet., 41, 677–687
Pubmed
[37]
Wain, L. V., Verwoert, G. C., O’Reilly, P. F., Shi, G., Johnson, T., Johnson, A. D., Bochud, M., Rice, K. M., Henneman, P., Smith, A. V., et al., and the LifeLines Cohort Study, and the EchoGen consortium, and the AortaGen Consortium, and the CHARGE Consortium Heart Failure Working Group, and the KidneyGen consortium, and the CKDGen consortium, and the Cardiogenics consortium, and the CardioGram. (2011) Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet., 43, 1005–1011
Pubmed
[38]
Cho, Y. S., Go, M. J., Kim, Y. J., Heo, J. Y., Oh, J. H., Ban, H. J., Yoon, D., Lee, M. H., Kim, D. J., Park, M., et al. (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet., 41, 527–534
Pubmed
[39]
Delles, C. and Padmanabhan, S. (2012) Genetics and hypertension: is it time to change my practice? Can. J. Cardiol., 28, 296–304
Pubmed
[40]
Schumacher, F. R., Berndt, S. I., Siddiq, A., Jacobs, K. B., Wang, Z., Lindstrom, S., Stevens, V. L., Chen, C., Mondul, A. M., Travis, R. C., et al. (2011) Genome-wide association study identifies new prostate cancer susceptibility loci. Hum. Mol. Genet., 20, 3867–3875
Pubmed
[41]
Sanson, M., Hosking, F. J., Shete, S., Zelenika, D., Dobbins, S. E., Ma, Y., Enciso-Mora, V., Idbaih, A., Delattre, J. Y., Hoang-Xuan, K., et al. (2011) Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum. Mol. Genet., 20, 2897–2904
Pubmed
[42]
Fletcher, O., Johnson, N., Orr, N., Hosking, F. J., Gibson, L. J., Walker, K., Zelenika, D., Gut, I., Heath, S., Palles, C., et al. (2011) Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J. Natl. Cancer Inst., 103, 425–435
Pubmed
[43]
Cui, R., Okada, Y., Jang, S. G., Ku, J. L., Park, J. G., Kamatani, Y., Hosono, N., Tsunoda, T., Kumar, V., Tanikawa, C., et al. (2011) Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut, 60, 799–805
Pubmed
[44]
Rothman, N., Garcia-Closas, M., Chatterjee, N., Malats, N., Wu, X., Figueroa, J. D., Real, F. X., Van Den Berg, D., Matullo, G., Baris, D., et al. (2010) A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat. Genet., 42, 978–984
Pubmed
[45]
Goode, E. L., Chenevix-Trench, G., Song, H., Ramus, S. J., Notaridou, M., Lawrenson, K., Widschwendter, M., Vierkant, R. A., Larson, M. C., Kjaer, S. K., et al., and the Wellcome Trust Case-Control Consortium, and the Australian Cancer Study (Ovarian Cancer), and the Australian Ovarian Cancer Study Group, and the Ovarian Cancer Association Consortium (OCAC), and the Ovarian Cancer Association Consortium (OCAC). (2010) A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat. Genet., 42, 874–879
Pubmed
[46]
Low, S. K., Kuchiba, A., Zembutsu, H., Saito, A., Takahashi, A., Kubo, M., Daigo, Y., Kamatani, N., Chiku, S., Totsuka, H., et al. (2010) Genome-wide association study of pancreatic cancer in Japanese population. PLoS ONE, 5, e11824
Pubmed
[47]
Weedon, M. N., Clark, V. J., Qian, Y., Ben-Shlomo, Y., Timpson, N., Ebrahim, S., Lawlor, D. A., Pembrey, M. E., Ring, S., Wilkin, T. J., et al. (2006) A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses. Am. J. Hum. Genet., 79, 991–1001
Pubmed
[48]
McCarthy, M. I. (2010) Genomics, type 2 diabetes, and obesity. N. Engl. J. Med., 363, 2339–2350
Pubmed
[49]
Kooner, J. S., Saleheen, D., Sim, X., Sehmi, J., Zhang, W., Frossard, P., Been, L. F., Chia, K. S., Dimas, A. S., Hassanali, N., et al., and the DIAGRAM, and the MuTHER. (2011) Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet., 43, 984–989
Pubmed
[50]
Yamauchi, T., Hara, K., Maeda, S., Yasuda, K., Takahashi, A., Horikoshi, M., Nakamura, M., Fujita, H., Grarup, N., Cauchi, S., et al. (2010) A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat. Genet., 42, 864–868
Pubmed
[51]
Shu, X. O., Long, J., Cai, Q., Qi, L., Xiang, Y. B., Cho, Y. S., Tai, E. S., Li, X., Lin, X., Chow, W. H., et al. (2010) Identification of new genetic risk variants for type 2 diabetes. PLoS Genet., 6
CrossRef Pubmed Google scholar
[52]
Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7–24
Pubmed
[53]
National Human Genome Research Institute. A Catalog of Published Genome-Wide Association Studies.
[54]
The Pharmacogenomics Knowledge Base.
[55]
Literature analysis by R. Ranganathan and C. Woods.
[56]
Collins, F. S. (2011) Reengineering translational science: the time is right. Sci. Transl. Med., 3, 90cm17
Pubmed
[57]
The ENCODE Project Consortium. (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306, 636–640
Pubmed
[58]
Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F., Epstein, C. B., Frietze, S., Harrow, J., Kaul, R., et al., and the ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
Pubmed
[59]
Patti, G. J., Yanes, O. and Siuzdak, G. (2012) Innovation: Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol., 13, 263–269
Pubmed
[60]
Blackstock, W. P. and Weir, M. P. (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol., 17, 121–127
Pubmed
[61]
Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature, 340, 245–246
Pubmed
[62]
Yu, H., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science, 322, 104–110
Pubmed
[63]
Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., Ding, H., Koh, J. L., Toufighi, K., Mostafavi, S., et al. (2010) The genetic landscape of a cell. Science, 327, 425–431
Pubmed
[64]
Gandhi, T. K., Zhong, J., Mathivanan, S., Karthick, L., Chandrika, K. N., Mohan, S. S., Sharma, S., Pinkert, S., Nagaraju, S., Periaswamy, B., et al. (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat. Genet., 38, 285–293
Pubmed
[65]
Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabási, A. L. (2007) The human disease network. Proc. Natl. Acad. Sci. U.S.A., 104, 8685–8690
Pubmed
[66]
Oti, M., Snel, B., Huynen, M. A. and Brunner, H. G. (2006) Predicting disease genes using protein-protein interactions. J. Med. Genet., 43, 691–698
Pubmed
[67]
Xu, J. and Li, Y. (2006) Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics, 22, 2800–2805
Pubmed
[68]
Wenk, M. R. (2010) Lipidomics: new tools and applications. Cell, 143, 888–895
Pubmed
[69]
Thomas, A., Lenglet, S., Chaurand, P., Deglon, J., Mangin, P., Mach, F., Steffens, S., Wolfender, J. L. and Staub, C. (2011) Mass spectrometry for the evaluation of cardiovascular diseases based on proteomics and lipidomics. Thromb. Haemost., 106, 20–33
Pubmed
[70]
Shevchenko, A. and Simons, K. (2010) Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol., 11, 593–598
Pubmed
[71]
Quehenberger, O., Armando, A. M., Brown, A. H., Milne, S. B., Myers, D. S., Merrill, A. H., Bandyopadhyay, S., Jones, K. N., Kelly, S., Shaner, R. L., et al. (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res., 51, 3299–3305
Pubmed
[72]
Kannel, W. B., Dawber, T. R., Kagan, A., Revotskie, N. and Stokes, J. 3rd. (1961) Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann. Intern. Med., 55, 33–50
Pubmed
[73]
Pilia, G., Chen, W. M., Scuteri, A., Orrú, M., Albai, G., Dei, M., Lai, S., Usala, G., Lai, M., Loi, P., et al. (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet., 2, e132
Pubmed
[74]
Stegemann, C., Drozdov, I., Shalhoub, J., Humphries, J., Ladroue, C., Didangelos, A., Baumert, M., Allen, M., Davies, A. H., Monaco, C., et al. (2011) Comparative lipidomics profiling of human atherosclerotic plaques. Circ. Cardiovasc. Genet., 4, 232–242
Pubmed
[75]
Meikle, P. J., Wong, G., Tsorotes, D., Barlow, C. K., Weir, J. M., Christopher, M. J., MacIntosh, G. L., Goudey, B., Stern, L., Kowalczyk, A., et al. (2011) Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 31, 2723–2732
Pubmed
[76]
Yetukuri, L., Katajamaa, M., Medina-Gomez, G., Seppänen-Laakso, T., Vidal-Puig, A. and Oresic, M. (2007) Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst. Biol., 1, 12
Pubmed
[77]
Kaddurah-Daouk, R., Baillie, R. A., Zhu, H., Zeng, Z. B., Wiest, M. M., Nguyen, U. T., Watkins, S. M. and Krauss, R. M. (2010) Lipidomic analysis of variation in response to simvastatin in the Cholesterol and Pharmacogenetics Study. Metabolomics, 6, 191–201
Pubmed
[78]
Cobbold, J. F., Patel, J. H., Goldin, R. D., North, B. V., Crossey, M. M., Fitzpatrick, J., Wylezinska, M., Thomas, H. C., Cox, I. J. and Taylor-Robinson, S. D. (2010) Hepatic lipid profiling in chronic hepatitis C: an in vitro and in vivo proton magnetic resonance spectroscopy study. J. Hepatol., 52, 16–24
Pubmed
[79]
Wu, H., Volponi, J. V., Oliver, A. E., Parikh, A. N., Simmons, B. A. and Singh, S. (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A., 108, 3809–3814
Pubmed
[80]
Bertozzi, C. R. and Sasisekharan, R. (2009) Glycomics. In: Varki, A., (eds). Essentials of Glycobiology. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, Chapter 48.
[81]
Hart, G. W. and Copeland, R. J. (2010) Glycomics hits the big time. Cell, 143, 672–676
Pubmed
[82]
Villoslada, P. and Baranzini, S. (2012) Data integration and systems biology approaches for biomarker discovery: challenges and opportunities for multiple sclerosis. J. Neuroimmunol., 248, 58–65
Pubmed
[83]
An, H. J., Kronewitter, S. R., de Leoz, M. L. and Lebrilla, C. B. (2009) Glycomics and disease markers. Curr. Opin. Chem. Biol., 13, 601– 607
Pubmed
[84]
Angata, T., Fujinawa, R., Kurimoto, A., Nakajima, K., Kato, M., Takamatsu, S., Korekane, H., Gao, C. X., Ohtsubo, K., Kitazume, S., et al. (2012) Integrated approach toward the discovery of glyco-biomarkers of inflammation-related diseases. Ann. N. Y. Acad. Sci., 1253, 159–169
Pubmed
[85]
Callewaert, N., Van Vlierberghe, H., Van Hecke, A., Laroy, W., Delanghe, J. and Contreras, R. (2004) Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics. Nat. Med., 10, 429–434
Pubmed
[86]
Taylor, A. D., Hancock, W. S., Hincapie, M., Taniguchi, N. and Hanash, S. M. (2009) Towards an integrated proteomic and glycomic approach to finding cancer biomarkers. Genome Med., 1, 57
Pubmed
[87]
Maunakea, A. K., Chepelev, I. and Zhao, K. (2010) Epigenome mapping in normal and disease States. Circ. Res., 107, 327–339
Pubmed
[88]
American Association for Cancer Research Human Epigenome Task Force, and the European Union, Network of Excellence, Scientific Advisory Board. (2008) Moving AHEAD with an international human epigenome project. Nature, 454, 711–715
Pubmed
[89]
Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev., 16, 6–21
Pubmed
[90]
Robertson, K. D. (2005) DNA methylation and human disease. Nat. Rev. Genet., 6, 597–610
Pubmed
[91]
Feinberg, A. P. and Tycko, B. (2004) The history of cancer epigenetics. Nat. Rev. Cancer, 4, 143–153
Pubmed
[92]
Widschwendter, M., Jiang, G., Woods, C., Müller, H. M., Fiegl, H., Goebel, G., Marth, C., Müller-Holzner, E., Zeimet, A. G., Laird, P. W., et al. (2004) DNA hypomethylation and ovarian cancer biology. Cancer Res., 64, 4472–4480
Pubmed
[93]
Zhuang, J., Peng, W., Li, H., Wang, W., Wei, Y., Li, W. and Xu, Y. (2012) Methylation of p15INK4b and expression of ANRIL on chromosome 9p21 are associated with coronary artery disease. PLoS ONE, 7, e47193
Pubmed
[94]
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., et al. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897–903
Pubmed
[95]
Wang, Y., Fischle, W., Cheung, W., Jacobs, S., Khorasanizadeh, S. and Allis, C. D. (2004) Beyond the double helix: writing and reading the histone code. Novartis Found. Symp., 259, 3–17, (discussion 17– 21, 163–169).
[96]
Suh, Y. A., Lee, H. Y., Virmani, A., Wong, J., Mann, K. K., Miller, W. H. Jr, Gazdar, A. and Kurie, J. M. (2002) Loss of retinoic acid receptor beta gene expression is linked to aberrant histone H3 acetylation in lung cancer cell lines. Cancer Res., 62, 3945–3949
Pubmed
[97]
Fraga, M. F. and Esteller, M. (2005) Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle, 4, 1377–1381
Pubmed
[98]
Zhang, X., Zhao, X., Fiskus, W., Lin, J., Lwin, T., Rao, R., Zhang, Y., Chan, J. C., Fu, K., Marquez, V. E., et al. (2012) Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell, 22, 506–523
Pubmed
[99]
Park, J. H., Stoffers, D. A., Nicholls, R. D. and Simmons, R. A. (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest., 118, 2316–2324
Pubmed
[100]
Pinney, S. E. and Simmons, R. A. (2010) Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol. Metab., 21, 223–229
Pubmed
[101]
Sommer, B., Köhler, M., Sprengel, R. and Seeburg, P. H. (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell, 67, 11–19
Pubmed
[102]
Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E. and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149, 1635–1646
Pubmed
[103]
O’Neil, R. T. and Emeson, R. B. (2012) Quantitative analysis of 5HT(2C) receptor RNA editing patterns in psychiatric disorders. Neurobiol. Dis., 45, 8–13
Pubmed
[104]
Taft, R. J., Pang, K. C., Mercer, T. R., Dinger, M. and Mattick, J. S. (2010) Non-coding RNAs: regulators of disease. J. Pathol., 220, 126–139
Pubmed
[105]
Esteller, M. (2011) Non-coding RNAs in human disease. Nat. Rev. Genet., 12, 861–874
Pubmed
[106]
Yap, K. L., Li, S., Muñoz-Cabello, A. M., Raguz, S., Zeng, L., Mujtaba, S., Gil, J., Walsh, M. J. and Zhou, M. M. (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell, 38, 662–674
Pubmed
[107]
Faghihi, M. A., Modarresi, F., Khalil, A. M., Wood, D. E., Sahagan, B. G., Morgan, T. E., Finch, C. E., St Laurent, G. 3rd, Kenny, P. J. and Wahlestedt, C. (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med., 14, 723–730
Pubmed
[108]
Rowles, J., Wong, M., Powers, R. and Olsen, M. (2012) FTO, RNA epigenetics and epilepsy. Epigenetics, 7, 1094–1097
Pubmed
[109]
Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W. and Cui, Q. (2008) An analysis of human microRNA and disease associations. PLoS ONE, 3, e3420
Pubmed
[110]
Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., et al. (2005) MicroRNA expression profiles classify human cancers. Nature, 435, 834–838
Pubmed
[111]
Li, C., Pei, F., Zhu, X., Duan, D. D. and Zeng, C. (2012) Circulating microRNAs as novel and sensitive biomarkers of acute myocardial infarction. Clin. Biochem., 45, 727–732
Pubmed
[112]
Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., et al. (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984
Pubmed
[113]
Beltrao, P., Albanèse, V., Kenner, L. R., Swaney, D. L., Burlingame, A., Villén, J., Lim, W. A., Fraser, J. S., Frydman, J. and Krogan, N. J. (2012) Systematic functional prioritization of protein posttranslational modifications. Cell, 150, 413–425
Pubmed
[114]
Grasbon-Frodl, E., Lorenz, H., Mann, U., Nitsch, R. M., Windl, O. and Kretzschmar, H. A. (2004) Loss of glycosylation associated with the T183A mutation in human prion disease. Acta Neuropathol., 108, 476–484
Pubmed
[115]
Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., et al. (1981) Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465
Pubmed
[116]
Mercer, T. R., Neph, S., Dinger, M. E., Crawford, J., Smith, M. A., Shearwood, A. M., Haugen, E., Bracken, C. P., Rackham, O., Stamatoyannopoulos, J. A., et al. (2011) The human mitochondrial transcriptome. Cell, 146, 645–658
Pubmed
[117]
Taylor, R. W. and Turnbull, D. M. (2005) Mitochondrial DNA mutations in human disease. Nat. Rev. Genet., 6, 389–402
Pubmed
[118]
Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet., 34, 267–273
Pubmed
[119]
Petersen, K. F., Befroy, D., Dufour, S., Dziura, J., Ariyan, C., Rothman, D. L., DiPietro, L., Cline, G. W. and Shulman, G. I. (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science, 300, 1140–1142
Pubmed
[120]
Sobenin, I. A., Sazonova, M. A., Ivanova, M. M., Zhelankin, A. V., Myasoedova, V. A., Postnov, A. Y., Nurbaev, S. D., Bobryshev, Y. V. and Orekhov, A. N. (2012) Mutation C3256T of mitochondrial genome in white blood cells: novel genetic marker of atherosclerosis and coronary heart disease. PLoS ONE, 7, e46573
Pubmed
[121]
Relman, D. A. (2012) Microbiology: learning about who we are. Nature, 486, 194–195
Pubmed
[122]
Human Microbiome Project Consortium. (2012) A framework for human microbiome research. Nature, 486, 215–221
Pubmed
[123]
Relman, D. A. (2012) The human microbiome: ecosystem resilience and health. Nutr. Rev., 70, S2–S9
Pubmed
[124]
Ursell, L. K., Metcalf, J. L., Parfrey, L. W. and Knight, R. (2012) Defining the human microbiome. Nutr. Rev., 70, S38–S44
Pubmed
[125]
McNiven, E. M., German, J. B. and Slupsky, C. M. (2011) Analytical metabolomics: nutritional opportunities for personalized health. J. Nutr. Biochem., 22, 995–1002
Pubmed
[126]
Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., et al. (2012) Human gut microbiome viewed across age and geography. Nature, 486, 222–227
Pubmed
[127]
Human Microbiome Project Consortium. (2012) Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214
Pubmed
[128]
Burcelin, R. (2012) Regulation of metabolism: a cross talk between gut microbiota and its human host. Physiology (Bethesda), 27, 300–307
Pubmed
[129]
Coons, M. J., Demott, A., Buscemi, J., Duncan, J. M., Pellegrini, C. A., Steglitz, J., Pictor, A. and Spring, B. (2012) Technology interventions to curb obesity: a systematic review of the current literature. Curr. Cardiovasc. Risk Rep., 6, 120–134
Pubmed
[130]
Kahrstrom, C. T. (2012) Microbiome: gut microbiome as a marker for diabetes. Nat. Rev. Microbiol., 10, 733.
[131]
Burcelin, R., Garidou, L. and Pomié, C. (2012) Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin. Immunol., 24, 67–74
Pubmed
[132]
Greiner, T. and Bäckhed, F. (2011) Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol. Metab., 22, 117–123
Pubmed
[133]
Azad, M. B. and Kozyrskyj, A. L. (2012) Perinatal programming of asthma: the role of gut microbiota. Clin. Dev. Immunol., 2012, 932072
Pubmed
[134]
Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., Feldstein, A. E., Britt, E. B., Fu, X., Chung, Y. M., et al. (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63
Pubmed
[135]
Harris, K., Kassis, A., Major, G. and Chou, C. J. (2012) Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes., 2012, 879151
Pubmed
[136]
Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., Reynolds, A. P., Sandstrom, R., Qu, H., Brody, J., et al. (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science, 337, 1190–1195
Pubmed
[137]
Torkamani, A., Topol, E. J. and Schork, N. J. (2008) Pathway analysis of seven common diseases assessed by genome-wide association. Genomics, 92, 265–272
Pubmed
[138]
Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., Pahwa, J. S., Moskvina, V., Dowzell, K., Williams, A., et al. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet., 41, 1088–1093
Pubmed
[139]
Chen, F., Chen, G. K., Stram, D. O., Millikan, R. C., Ambrosone, C. B., John, E. M., Bernstein, L., Zheng, W., Palmer, J. R., Hu, J. J., et al. (2013) A genome-wide association study of breast cancer in women of African ancestry. Hum. Genet., 132, 39–48
Pubmed
[140]
Yeager, M., Chatterjee, N., Ciampa, J., Jacobs, K. B., Gonzalez-Bosquet, J., Hayes, R. B., Kraft, P., Wacholder, S., Orr, N., Berndt, S., et al. (2009) Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat. Genet., 41, 1055–1057
Pubmed
[141]
Schnabel, R. B., Baccarelli, A., Lin, H., Ellinor, P. T. and Benjamin, E. J. (2012) Next steps in cardiovascular disease genomic research—sequencing, epigenetics, and transcriptomics. Clin. Chem., 58, 113–126
Pubmed
[142]
Ndiaye, N. C., Azimi Nehzad, M., El Shamieh, S., Stathopoulou, M. G. and Visvikis-Siest, S. (2011) Cardiovascular diseases and genome-wide association studies. Clin. Chim. Acta, 412, 1697–1701
Pubmed
[143]
Rakyan, V. K., Down, T. A., Balding, D. J. and Beck, S. (2011) Epigenome-wide association studies for common human diseases. Nat. Rev. Genet., 12, 529–541
Pubmed
[144]
Bell, C. G. and Beck, S. (2010) The epigenomic interface between genome and environment in common complex diseases. Brief Funct. Genomics, 9, 477–485
Pubmed
[145]
Toyota, M., Suzuki, H., Yamashita, T., Hirata, K., Imai, K., Tokino, T. and Shinomura, Y. (2009) Cancer epigenomics: implications of DNA methylation in personalized cancer therapy. Cancer Sci., 100, 787–791
Pubmed
[146]
Ivanova, T., Zouridis, H., Wu, Y., Cheng, L. L., Tan, I. B., Gopalakrishnan, V., Ooi, C. H., Lee, J., Qin, L., Wu, J., et al. (2013) Integrated epigenomics identifies BMP4 as a modulator of cisplatin sensitivity in gastric cancer. Gut, 62, 22–33
Pubmed
[147]
Ordovás, J. M. and Smith, C. E. (2010) Epigenetics and cardiovascular disease. Nat. Rev. Cardiol., 7, 510–519
Pubmed
[148]
Trojan, H. J. (1975) Eye complications in the long-term treatment with chloroquin. Study carried out in Togo. Rev. Int. Trach. Pathol. Ocul. Trop. Subtrop., 52, 129–137
Pubmed
[149]
Adamski, J. (2012) Genome-wide association studies with metabolomics. Genome Med., 4, 34
Pubmed
[150]
Quinones, M. P. and Kaddurah-Daouk, R. (2009) Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol. Dis., 35, 165–176
Pubmed
[151]
Madsen, R., Lundstedt, T. and Trygg, J. (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal. Chim. Acta, 659, 23–33
Pubmed
[152]
Ashley, E. A., Butte, A. J., Wheeler, M. T., Chen, R., Klein, T. E., Dewey, F. E., Dudley, J. T., Ormond, K. E., Pavlovic, A., Morgan, A. A., et al. (2010) Clinical assessment incorporating a personal genome. Lancet, 375, 1525–1535
Pubmed
[153]
Grayson, B. L., Wang, L. and Aune, T. M. (2011) Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes. Genes Immun., 12, 341–351
Pubmed
[154]
Masood, E. (1999) As consortium plans free SNP map of human genome. Nature. 398, 545–546
Pubmed
[155]
Broeckel, U., Hengstenberg, C., Mayer, B., Holmer, S., Martin, L. J., Comuzzie, A. G., Blangero, J., Nürnberg, P., Reis, A., Riegger, G. A., et al. (2002) A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nat. Genet., 30, 210–214
Pubmed
[156]
Fischer, M., Broeckel, U., Holmer, S., Baessler, A., Hengstenberg, C., Mayer, B., Erdmann, J., Klein, G., Riegger, G., Jacob, H. J., et al. (2005) Distinct heritable patterns of angiographic coronary artery disease in families with myocardial infarction. Circulation, 111, 855–862
Pubmed
[157]
Wichmann, H. E., Gieger, C. and Illig, T., and the MONICA/KORA Study Group. (2005) KORA-gen—resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen, 67, S26–S30
Pubmed
[158]
Xie, L., Weichel, B., Ohm, J. E. and Zhang, K. (2011) An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver. BMC Syst. Biol., 5, S4
Pubmed
[159]
Yi, J. M., et al. (2008) Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res. 68, 8094–8103
Pubmed
[160]
Uhlmann, K., Rohde, K., Zeller, C., Szymas, J., Vogel, S., Marczinek, K., Thiel, G., Nürnberg P. and Laird, P. W. (2003) Distinct methylation profiles of glioma subtypes. Int. J. Cancer, 106, 52–59
Pubmed
[161]
Cancer Genome Atlas Research Network. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068
Pubmed
[162]
Zhang, Y., Lv, J., Liu, H., Zhu, J., Su, J., Wu, Q., Qi, Y., Wang, F. and Li, X. (2010) HHMD: the human histone modification database. Nucleic Acids Res., 38, D149–D154
Pubmed
[163]
Lv, J., Liu, H., Su, J., Wu, X., Liu, H., Li, B., Xiao, X., Wang, F., Wu, Q. and Zhang, Y. (2012) DiseaseMeth: a human disease methylation database. Nucleic Acids Res., 40, D1030–D1035
Pubmed
[164]
Grunau, C., Renault, E., Rosenthal, A. and Roizes, G. (2001) MethDB—a public database for DNA methylation data. Nucleic Acids Res., 29, 270–274
Pubmed
[165]
Grunau, C., Renault, E. and Roizes, G. (2002) DNA Methylation Database “MethDB”: a user guide. J. Nutr., 132, 2435S–2439S
Pubmed
[166]
Amoreira, C., Hindermann, W. and Grunau, C. (2003) An improved version of the DNA Methylation database (MethDB). Nucleic Acids Res., 31, 75–77
Pubmed
[167]
Negre, V. and Grunau, C. (2006) The MethDB DAS server: adding an epigenetic information layer to the human genome. Epigenetics, 1, 101–105
Pubmed
[168]
Down, T. A., Rakyan, V. K., Turner, D. J., Flicek, P., Li, H., Kulesha, E., Gräf, S., Johnson, N., Herrero, J., Tomazou, E. M., et al. (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol., 26, 779–785
Pubmed
[169]
Pattyn, F., Hoebeeck, J., Robbrecht, P., Michels, E., De Paepe, A., Bottu, G., Coornaert, D., Herzog, R., Speleman, F. and Vandesompele, J. (2006) methBLAST and methPrimerDB: web-tools for PCR based methylation analysis. BMC Bioinformatics, 7, 496
Pubmed
[170]
Grunau, C., Schattevoy, R., Mache, N. and Rosenthal, A. (2000) MethTools—a toolbox to visualize and analyze DNA methylation data. Nucleic Acids Res., 28, 1053–1058
Pubmed
[171]
Kumaki, Y., Oda, M. and Okano, M. (2008) QUMA: quantification tool for methylation analysis. Nucleic Acids Res., 36, W170-5
Pubmed
[172]
Bock, C. and Lengauer, T. (2008) Computational epigenetics. Bioinformatics, 24, 1–10
Pubmed
[173]
Su, J., Yan, H., Wei, Y., Liu, H., Liu, H., Wang, F., Lv, J., Wu, Q. and Zhang, Y. (2013) CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res., 41, e4
Pubmed
[174]
Zhang, Y., Liu, H., Lv, J., Xiao, X., Zhu, J., Liu, X., Su, J., Li, X., Wu, Q., Wang, F., et al. (2011) QDMR: a quantitative method for identification of differentially methylated regions by entropy. Nucleic Acids Res., 39, e58
Pubmed
[175]
Li, X., Rao, S., Wang, Y. and Gong, B. (2004) Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Res., 32, 2685–2694
Pubmed
[176]
Li, X., Rao, S., Jiang, W., Li, C., Xiao, Y., Guo, Z., Zhang, Q., Wang, L., Du, L., Li, J., et al. (2006) Discovery of Time-Delayed Gene Regulatory Networks based on temporal gene expression profiling. BMC Bioinformatics, 7, 26
Pubmed
[177]
Zhou, X., Kao, M. C. and Wong, W. H. (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc. Natl. Acad. Sci. U.S.A., 99, 12783–12788
Pubmed
[178]
Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X., et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503–511
Pubmed
[179]
Butte, A. J., Ye, J., Häring, H. U., Stumvoll, M., White, M. F. and Kohane, I. S. (2001) Determining significant fold differences in gene expression analysis. Pac. Symp. Biocomput., 6–17
Pubmed
[180]
Chen, R., Mias, G. I., Li-Pook-Than, J., Jiang, L., Lam, H. Y., Chen, R., Miriami, E., Karczewski, K. J., Hariharan, M., Dewey, F. E., et al. (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 148, 1293–1307
Pubmed
[181]
Chen, L., Zhang, L., Zhao, Y., Xu, L., Shang, Y., Wang, Q., Li, W., Wang, H. and Li, X. (2009) Prioritizing risk pathways: a novel association approach to searching for disease pathways fusing SNPs and pathways. Bioinformatics, 25, 237–242
Pubmed
[182]
Califano, A., Butte, A. J., Friend, S., Ideker, T. and Schadt, E. (2012) Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat. Genet., 44, 841–847
Pubmed
[183]
Li, X., Jiang, W., Li, W., Lian, B., Wang, S., Liao, M., Chen, X., Wang, Y., Lv, Y., Wang, S., et al. (2012) Dissection of human MiRNA regulatory influence to subpathway. Brief. Bioinformatics, 13, 175–186
Pubmed
[184]
Ye, H., Liu, X., Lv, M., Wu, Y., Kuang, S., Gong, J., Yuan, P., Zhong, Z., Li, Q., Jia, H., et al. (2012) MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Nucleic Acids Res., 40, 5201– 5214
Pubmed
[185]
Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G. and Liu, Y. (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res., 37, D98–D104
Pubmed
[186]
Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B. Jr, Assad-Garcia, N., Glass, J. I. and Covert, M. W. (2012) A whole-cell computational model predicts phenotype from genotype. Cell, 150, 389–401
Pubmed

RIGHTS & PERMISSIONS

2013 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(258 KB)

Accesses

Citations

Detail

Sections
Recommended

/