Functional predictability of universal gene circuits in diverse microbial hosts

Chenrui Qin, Tong Xu, Xuejin Zhao, Yeqing Zong, Haoqian M. Zhang, Chunbo Lou, Qi Ouyang, Long Qian

PDF(1467 KB)
PDF(1467 KB)
Quant. Biol. ›› 2024, Vol. 12 ›› Issue (2) : 129-140. DOI: 10.1002/qub2.41
RESEARCH ARTICLE

Functional predictability of universal gene circuits in diverse microbial hosts

Author information +
History +

Abstract

Although the principles of synthetic biology were initially established in model bacteria, microbial producers, extremophiles and gut microbes have now emerged as valuable prokaryotic chassis for biological engineering. Extending the host range in which designed circuits can function reliably and predictably presents a major challenge for the concept of synthetic biology to materialize. In this work, we systematically characterized the cross-species universality of two transcriptional regulatory modules—the T7 RNA polymerase activator module and the repressors module—in three non-model microbes. We found striking linear relationships in circuit activities among different organisms for both modules. Parametrized model fitting revealed host non-specific parameters defining the universality of both modules. Lastly, a genetic NOT gate and a band-pass filter circuit were constructed from these modules and tested in non-model organisms. Combined models employing host non-specific parameters were successful in quantitatively predicting circuit behaviors, underscoring the potential of universal biological parts and predictive modeling in synthetic bioengineering.

Keywords

circuit predictability / host-independent genetic circuits / host-nonspecific parameters / parts characterization / transcriptional regulatory modules

Cite this article

Download citation ▾
Chenrui Qin, Tong Xu, Xuejin Zhao, Yeqing Zong, Haoqian M. Zhang, Chunbo Lou, Qi Ouyang, Long Qian. Functional predictability of universal gene circuits in diverse microbial hosts. Quant. Biol., 2024, 12(2): 129‒140 https://doi.org/10.1002/qub2.41

References

[1]
Taketani M , Zhang J , Zhang S , Triassi AJ , Huang Y-J , Griffith LG , et al. Genetic circuit design automation for the gut resident species bacteroides thetaiotaomicron. Nat Biotechnol. 2020; 38 (8): 1001.
CrossRef Google scholar
[2]
Adams BL . The next generation of synthetic biology chassis: moving synthetic biology from the laboratory to the field. ACS Synth Biol. 2016; 5 (12): 1328- 30.
CrossRef Google scholar
[3]
Din MO , Danino T , Prindle A , Skalak M , Selimkhanov J , Allen K , et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016; 536 (7614): 81- 5.
CrossRef Google scholar
[4]
El Karoui M , Hoyos-Flight M , Fletcher L . Future trends in synthetic biology—a report. Front Bioeng Biotechnol. 2019; 7: 175.
CrossRef Google scholar
[5]
Canton B , Labno A , Endy D . Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol. 2008; 26 (7): 787- 93.
CrossRef Google scholar
[6]
Valeri JA , Collins KM , Ramesh P , Alcantar MA , Lepe BA , Lu TK , et al. Sequence-to-function deep learning frameworks for engineered riboregulators. Nat Commun. 2020; 11 (1): 5058.
CrossRef Google scholar
[7]
Elmore JR , Furches A , Wolff GN , Gorday K , Guss AM . Development of a high efficiency integration system and promoter library for rapid modification of pseudomonas putida kt2440. Metab Eng Commun. 2017; 5: 1- 8.
CrossRef Google scholar
[8]
Roquet N , Soleimany AP , Ferris AC , Aaronson S , Lu TK . Synthetic recombinase-based state machines in living cells. Science. 2016; 353 (6297): aad8559.
CrossRef Google scholar
[9]
Nielsen AAK , Voigt CA . Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol. 2014; 10 (11): 763.
CrossRef Google scholar
[10]
Bradley RW , Buck M , Wang B . Tools and principles for microbial gene circuit engineering. J Mol Biol. 2016; 428 (5): 862- 88.
CrossRef Google scholar
[11]
Stanton BC , Nielsen AA , Tamsir A , Clancy K , Peterson T , Voigt CA . Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat Chem Biol. 2014; 10 (2): 99- 105.
CrossRef Google scholar
[12]
Wang W , Li Y , Wang Y , Shi C , Li C , Li Q , et al. Bacteriophage T7 transcription system: an enabling tool in synthetic biology. Biotechnol Adv. 2018; 36 (8): 2129- 37.
CrossRef Google scholar
[13]
Liang X , Li C , Wang W , Li Q . Integrating T7 RNA polymerase and its cognate transcriptional units for a host-independent and stable expression system in single plasmid. ACS Synth Biol. 2018; 7 (5): 1424- 35.
CrossRef Google scholar
[14]
Ramos JL , Martínez-Bueno M , Molina-Henares AJ , Terán W , Watanabe K , Zhang X , et al. The TETR family of transcriptional repressors. Microbiol Mol Biol Rev. 2005; 69 (2): 326- 56.
CrossRef Google scholar
[15]
Zong Y , Zhang HM , Lyu C , Ji X , Hou J , Guo X , et al. Insulated transcriptional elements enable precise design of genetic circuits. Nat Commun. 2017; 8 (1): 52.
CrossRef Google scholar
[16]
Chen Y , Zhang S , Young EM , Jones TS , Densmore D , Voigt CA . Genetic circuit design automation for yeast. Nature Microbiol. 2020; 5 (11): 1349- 60.
CrossRef Google scholar
[17]
Moon TS , Lou C , Tamsir A , Stanton BC , Voigt CA . Genetic programs constructed from layered logic gates in single cells. Nature. 2012; 491 (7423): 249- 53.
CrossRef Google scholar
[18]
Andrews LB , Nielsen AAK , Voigt CA . Cellular checkpoint control using programmable sequential logic. Science. 2018; 361 (6408): aap8987.
CrossRef Google scholar
[19]
Shin J , Zhang S , Der BS , Nielsen AAK , Voigt CA . Programming Escherichia coli to function as a digital display. Mol Syst Biol. 2020; 16 (3): e9401.
CrossRef Google scholar
[20]
Liu CC , Jewett MC , Chin JW , Voigt CA . Toward an orthogonal central dogma. Nat Chem Biol. 2018; 14 (2): 103- 6.
CrossRef Google scholar
[21]
Bintu L , Buchler NE , Garcia HG , Gerland U , Hwa T , Kondev J , et al. Transcriptional regulation by the numbers: models. Curr Opin Genet Dev. 2005; 15 (2): 116- 24.
CrossRef Google scholar
[22]
Nielsen AA , Der BS , Shin J , Vaidyanathan P , Paralanov V , Strychalski EA , et al. Genetic circuit design automation. Science. 2016; 352 (6281): aac7341.
CrossRef Google scholar
[23]
Ede C , Chen X , Lin M-Y , Chen YY . Quantitative analyses of core promoters enable precise engineering of regulated gene expression in mammalian cells. ACS Synth Biol. 2016; 5: 395- 404.
CrossRef Google scholar
[24]
Kushwaha M , Salis HM . A portable expression resource for engineering cross-species genetic circuits and pathways. Nat Commun. 2015; 6 (1): 7832.
CrossRef Google scholar
[25]
Kaplan S , Bren A , Dekel E , Alon U . The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol Syst Biol. 2008; 4 (1): 203.
CrossRef Google scholar
[26]
Wang Y , Wang H , Wei L , Li S , Liu L , Wang X . Synthetic promoter design in escherichia coli based on a deep generative network. Nucleic Acids Res. 2020; 48 (12): 6403- 12.
CrossRef Google scholar
[27]
Vilanova C , Tanner K , Dorado-Morales P , Villaescusa P , Chugani D , Frías A , et al. Standards not that standard. J Biol Eng. 2015; 9 (1): 17.
CrossRef Google scholar
[28]
Cardinale S , Joachimiak MP , Arkin AP . Effects of genetic variation on the e. coli host-circuit interface. Cell Rep. 2013; 4 (2): 231- 7.
CrossRef Google scholar
[29]
Keren L , Zackay O , Lotan-Pompan M , Barenholz U , Dekel E , Sasson V , et al. Promoters maintain their relative activity levels under different growth conditions. Mol Syst Biol. 2013; 9 (1): 701.
CrossRef Google scholar
[30]
Mutalik VK , Guimaraes JC , Cambray G , Mai Q-A , Christoffersen MJ , Martin L , et al. Quantitative estimation of activity and quality for collections of functional genetic elements. Nat Methods. 2013; 10 (4): 347- 53.
CrossRef Google scholar
[31]
Lou C , Stanton B , Chen Y-J , Munsky B , Voigt CA . Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol. 2012; 30 (11): 1137- 42.
CrossRef Google scholar
[32]
Zhao X , Zong Y , Lou Q , Qin C , Lou C . A flexible, modular and versatile functional part assembly toolkit for gene cluster engineering in streptomyces. Synth Syst Biotechnol. 2024; 9 (1): 69- 77.
CrossRef Google scholar
[33]
Temme K , Hill R , Segall-Shapiro TH , Moser F , Voigt CA . Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res. 2012; 40 (17): 8773- 81.
CrossRef Google scholar
[34]
Gardner TS , Cantor CR , Collins JJ . Construction of a genetic toggle switch in Escherichia coli. Nature. 2000; 403 (6767): 339- 42.
CrossRef Google scholar
[35]
Hou J , Zeng W , Zong Y , Chen Z , Miao C , Wang B , et al. Engineering the ultrasensitive transcription factors by fusing a modular oligomerization domain. ACS Synth Biol. 2018; 7 (5): 1188- 94.
CrossRef Google scholar
[36]
Salis HM . The ribosome binding site calculator. Methods Enzymol. 2011; 498: 19- 42.
CrossRef Google scholar
[37]
Wilson EH , Groom JD , Sarfatis MC , Ford SM , Lidstrom ME , Beck DAC . A computational framework for identifying promoter sequences in nonmodel organisms using RNA-seq data sets. ACS Synth Biol. 2021; 10 (6): 1394- 405.
CrossRef Google scholar
[38]
Sohka T , Heins RA , Phelan RM , Greisler JM , Townsend CA , Ostermeier M . An externally tunable bacterial band-pass filter. Proc Natl Acad Sci USA. 2009; 106 (25): 10135- 40.
CrossRef Google scholar
[39]
Barajas C , Huang H-H , Gibson J , Sandoval L , Del Vecchio D . Feedforward growth rate control mitigates gene activation burden. Nat Commun. 2022; 13 (1): 7054.
CrossRef Google scholar
[40]
Bashor CJ , Patel N , Choubey S , Beyzavi A , Kondev J , Collins JJ , et al. Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. Science. 2019; 364 (6440): 593- 7.
CrossRef Google scholar
[41]
Barajas C , Del Vecchio D . Synthetic biology by controller design. Curr Opin Biotechnol. 2022; 78: 102837.
CrossRef Google scholar
[42]
Liao C , Blanchard AE , Lu T . An integrative circuit-host modelling framework for predicting synthetic gene network behaviours. Nature Microbiol. 2017; 2 (12): 1658- 66.
CrossRef Google scholar
[43]
Boo A , Ellis T , Stan G-B . Host-aware synthetic biology. Curr Opin Struct Biol. 2019; 14: 66- 72.
CrossRef Google scholar
[44]
Zhang HM , Chen S , Shi H , Ji W , Zong Y , Ouyang Q , et al. Measurements of gene expression at steady state improve the predictability of part assembly. ACS Synth Biol. 2015; 5 (3): 269- 73.
CrossRef Google scholar
[45]
Xiang Y , Dalchau N , Wang B . Scaling up genetic circuit design for cellular computing: advances and prospects. Nat Comput. 2018; 17 (4): 833- 53.
CrossRef Google scholar
[46]
Pausch P , Al-Shayeb B , Bisom-Rapp E , Tsuchida CA , Li Z , Cress BF , et al. Crispr-casφ from huge phages is a hypercompact genome editor. Science. 2020; 369 (6501): 333- 7.
CrossRef Google scholar
[47]
Anzalone AV , Koblan LW , Liu DR . Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020; 38 (7): 824- 44.
CrossRef Google scholar
[48]
Angenent-Mari NM , Garruss AS , Soenksen LR , Church G , Collins JJ . A deep learning approach to programmable rna switches. Nat Commun. 2020; 11 (1): 5057.
CrossRef Google scholar
[49]
Way JC , Collins JJ , Keasling JD , Silver PA . Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell. 2014; 157 (1): 151- 61.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(1467 KB)

Accesses

Citations

Detail

Sections
Recommended

/