Functional predictability of universal gene circuits in diverse microbial hosts
Chenrui Qin, Tong Xu, Xuejin Zhao, Yeqing Zong, Haoqian M. Zhang, Chunbo Lou, Qi Ouyang, Long Qian
Functional predictability of universal gene circuits in diverse microbial hosts
Although the principles of synthetic biology were initially established in model bacteria, microbial producers, extremophiles and gut microbes have now emerged as valuable prokaryotic chassis for biological engineering. Extending the host range in which designed circuits can function reliably and predictably presents a major challenge for the concept of synthetic biology to materialize. In this work, we systematically characterized the cross-species universality of two transcriptional regulatory modules—the T7 RNA polymerase activator module and the repressors module—in three non-model microbes. We found striking linear relationships in circuit activities among different organisms for both modules. Parametrized model fitting revealed host non-specific parameters defining the universality of both modules. Lastly, a genetic NOT gate and a band-pass filter circuit were constructed from these modules and tested in non-model organisms. Combined models employing host non-specific parameters were successful in quantitatively predicting circuit behaviors, underscoring the potential of universal biological parts and predictive modeling in synthetic bioengineering.
circuit predictability / host-independent genetic circuits / host-nonspecific parameters / parts characterization / transcriptional regulatory modules
[1] |
Taketani M , Zhang J , Zhang S , Triassi AJ , Huang Y-J , Griffith LG , et al. Genetic circuit design automation for the gut resident species bacteroides thetaiotaomicron. Nat Biotechnol. 2020; 38 (8): 1001.
CrossRef
Google scholar
|
[2] |
Adams BL . The next generation of synthetic biology chassis: moving synthetic biology from the laboratory to the field. ACS Synth Biol. 2016; 5 (12): 1328- 30.
CrossRef
Google scholar
|
[3] |
Din MO , Danino T , Prindle A , Skalak M , Selimkhanov J , Allen K , et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016; 536 (7614): 81- 5.
CrossRef
Google scholar
|
[4] |
El Karoui M , Hoyos-Flight M , Fletcher L . Future trends in synthetic biology—a report. Front Bioeng Biotechnol. 2019; 7: 175.
CrossRef
Google scholar
|
[5] |
Canton B , Labno A , Endy D . Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol. 2008; 26 (7): 787- 93.
CrossRef
Google scholar
|
[6] |
Valeri JA , Collins KM , Ramesh P , Alcantar MA , Lepe BA , Lu TK , et al. Sequence-to-function deep learning frameworks for engineered riboregulators. Nat Commun. 2020; 11 (1): 5058.
CrossRef
Google scholar
|
[7] |
Elmore JR , Furches A , Wolff GN , Gorday K , Guss AM . Development of a high efficiency integration system and promoter library for rapid modification of pseudomonas putida kt2440. Metab Eng Commun. 2017; 5: 1- 8.
CrossRef
Google scholar
|
[8] |
Roquet N , Soleimany AP , Ferris AC , Aaronson S , Lu TK . Synthetic recombinase-based state machines in living cells. Science. 2016; 353 (6297): aad8559.
CrossRef
Google scholar
|
[9] |
Nielsen AAK , Voigt CA . Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol. 2014; 10 (11): 763.
CrossRef
Google scholar
|
[10] |
Bradley RW , Buck M , Wang B . Tools and principles for microbial gene circuit engineering. J Mol Biol. 2016; 428 (5): 862- 88.
CrossRef
Google scholar
|
[11] |
Stanton BC , Nielsen AA , Tamsir A , Clancy K , Peterson T , Voigt CA . Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat Chem Biol. 2014; 10 (2): 99- 105.
CrossRef
Google scholar
|
[12] |
Wang W , Li Y , Wang Y , Shi C , Li C , Li Q , et al. Bacteriophage T7 transcription system: an enabling tool in synthetic biology. Biotechnol Adv. 2018; 36 (8): 2129- 37.
CrossRef
Google scholar
|
[13] |
Liang X , Li C , Wang W , Li Q . Integrating T7 RNA polymerase and its cognate transcriptional units for a host-independent and stable expression system in single plasmid. ACS Synth Biol. 2018; 7 (5): 1424- 35.
CrossRef
Google scholar
|
[14] |
Ramos JL , Martínez-Bueno M , Molina-Henares AJ , Terán W , Watanabe K , Zhang X , et al. The TETR family of transcriptional repressors. Microbiol Mol Biol Rev. 2005; 69 (2): 326- 56.
CrossRef
Google scholar
|
[15] |
Zong Y , Zhang HM , Lyu C , Ji X , Hou J , Guo X , et al. Insulated transcriptional elements enable precise design of genetic circuits. Nat Commun. 2017; 8 (1): 52.
CrossRef
Google scholar
|
[16] |
Chen Y , Zhang S , Young EM , Jones TS , Densmore D , Voigt CA . Genetic circuit design automation for yeast. Nature Microbiol. 2020; 5 (11): 1349- 60.
CrossRef
Google scholar
|
[17] |
Moon TS , Lou C , Tamsir A , Stanton BC , Voigt CA . Genetic programs constructed from layered logic gates in single cells. Nature. 2012; 491 (7423): 249- 53.
CrossRef
Google scholar
|
[18] |
Andrews LB , Nielsen AAK , Voigt CA . Cellular checkpoint control using programmable sequential logic. Science. 2018; 361 (6408): aap8987.
CrossRef
Google scholar
|
[19] |
Shin J , Zhang S , Der BS , Nielsen AAK , Voigt CA . Programming Escherichia coli to function as a digital display. Mol Syst Biol. 2020; 16 (3): e9401.
CrossRef
Google scholar
|
[20] |
Liu CC , Jewett MC , Chin JW , Voigt CA . Toward an orthogonal central dogma. Nat Chem Biol. 2018; 14 (2): 103- 6.
CrossRef
Google scholar
|
[21] |
Bintu L , Buchler NE , Garcia HG , Gerland U , Hwa T , Kondev J , et al. Transcriptional regulation by the numbers: models. Curr Opin Genet Dev. 2005; 15 (2): 116- 24.
CrossRef
Google scholar
|
[22] |
Nielsen AA , Der BS , Shin J , Vaidyanathan P , Paralanov V , Strychalski EA , et al. Genetic circuit design automation. Science. 2016; 352 (6281): aac7341.
CrossRef
Google scholar
|
[23] |
Ede C , Chen X , Lin M-Y , Chen YY . Quantitative analyses of core promoters enable precise engineering of regulated gene expression in mammalian cells. ACS Synth Biol. 2016; 5: 395- 404.
CrossRef
Google scholar
|
[24] |
Kushwaha M , Salis HM . A portable expression resource for engineering cross-species genetic circuits and pathways. Nat Commun. 2015; 6 (1): 7832.
CrossRef
Google scholar
|
[25] |
Kaplan S , Bren A , Dekel E , Alon U . The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol Syst Biol. 2008; 4 (1): 203.
CrossRef
Google scholar
|
[26] |
Wang Y , Wang H , Wei L , Li S , Liu L , Wang X . Synthetic promoter design in escherichia coli based on a deep generative network. Nucleic Acids Res. 2020; 48 (12): 6403- 12.
CrossRef
Google scholar
|
[27] |
Vilanova C , Tanner K , Dorado-Morales P , Villaescusa P , Chugani D , Frías A , et al. Standards not that standard. J Biol Eng. 2015; 9 (1): 17.
CrossRef
Google scholar
|
[28] |
Cardinale S , Joachimiak MP , Arkin AP . Effects of genetic variation on the e. coli host-circuit interface. Cell Rep. 2013; 4 (2): 231- 7.
CrossRef
Google scholar
|
[29] |
Keren L , Zackay O , Lotan-Pompan M , Barenholz U , Dekel E , Sasson V , et al. Promoters maintain their relative activity levels under different growth conditions. Mol Syst Biol. 2013; 9 (1): 701.
CrossRef
Google scholar
|
[30] |
Mutalik VK , Guimaraes JC , Cambray G , Mai Q-A , Christoffersen MJ , Martin L , et al. Quantitative estimation of activity and quality for collections of functional genetic elements. Nat Methods. 2013; 10 (4): 347- 53.
CrossRef
Google scholar
|
[31] |
Lou C , Stanton B , Chen Y-J , Munsky B , Voigt CA . Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol. 2012; 30 (11): 1137- 42.
CrossRef
Google scholar
|
[32] |
Zhao X , Zong Y , Lou Q , Qin C , Lou C . A flexible, modular and versatile functional part assembly toolkit for gene cluster engineering in streptomyces. Synth Syst Biotechnol. 2024; 9 (1): 69- 77.
CrossRef
Google scholar
|
[33] |
Temme K , Hill R , Segall-Shapiro TH , Moser F , Voigt CA . Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res. 2012; 40 (17): 8773- 81.
CrossRef
Google scholar
|
[34] |
Gardner TS , Cantor CR , Collins JJ . Construction of a genetic toggle switch in Escherichia coli. Nature. 2000; 403 (6767): 339- 42.
CrossRef
Google scholar
|
[35] |
Hou J , Zeng W , Zong Y , Chen Z , Miao C , Wang B , et al. Engineering the ultrasensitive transcription factors by fusing a modular oligomerization domain. ACS Synth Biol. 2018; 7 (5): 1188- 94.
CrossRef
Google scholar
|
[36] |
Salis HM . The ribosome binding site calculator. Methods Enzymol. 2011; 498: 19- 42.
CrossRef
Google scholar
|
[37] |
Wilson EH , Groom JD , Sarfatis MC , Ford SM , Lidstrom ME , Beck DAC . A computational framework for identifying promoter sequences in nonmodel organisms using RNA-seq data sets. ACS Synth Biol. 2021; 10 (6): 1394- 405.
CrossRef
Google scholar
|
[38] |
Sohka T , Heins RA , Phelan RM , Greisler JM , Townsend CA , Ostermeier M . An externally tunable bacterial band-pass filter. Proc Natl Acad Sci USA. 2009; 106 (25): 10135- 40.
CrossRef
Google scholar
|
[39] |
Barajas C , Huang H-H , Gibson J , Sandoval L , Del Vecchio D . Feedforward growth rate control mitigates gene activation burden. Nat Commun. 2022; 13 (1): 7054.
CrossRef
Google scholar
|
[40] |
Bashor CJ , Patel N , Choubey S , Beyzavi A , Kondev J , Collins JJ , et al. Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. Science. 2019; 364 (6440): 593- 7.
CrossRef
Google scholar
|
[41] |
Barajas C , Del Vecchio D . Synthetic biology by controller design. Curr Opin Biotechnol. 2022; 78: 102837.
CrossRef
Google scholar
|
[42] |
Liao C , Blanchard AE , Lu T . An integrative circuit-host modelling framework for predicting synthetic gene network behaviours. Nature Microbiol. 2017; 2 (12): 1658- 66.
CrossRef
Google scholar
|
[43] |
Boo A , Ellis T , Stan G-B . Host-aware synthetic biology. Curr Opin Struct Biol. 2019; 14: 66- 72.
CrossRef
Google scholar
|
[44] |
Zhang HM , Chen S , Shi H , Ji W , Zong Y , Ouyang Q , et al. Measurements of gene expression at steady state improve the predictability of part assembly. ACS Synth Biol. 2015; 5 (3): 269- 73.
CrossRef
Google scholar
|
[45] |
Xiang Y , Dalchau N , Wang B . Scaling up genetic circuit design for cellular computing: advances and prospects. Nat Comput. 2018; 17 (4): 833- 53.
CrossRef
Google scholar
|
[46] |
Pausch P , Al-Shayeb B , Bisom-Rapp E , Tsuchida CA , Li Z , Cress BF , et al. Crispr-casφ from huge phages is a hypercompact genome editor. Science. 2020; 369 (6501): 333- 7.
CrossRef
Google scholar
|
[47] |
Anzalone AV , Koblan LW , Liu DR . Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020; 38 (7): 824- 44.
CrossRef
Google scholar
|
[48] |
Angenent-Mari NM , Garruss AS , Soenksen LR , Church G , Collins JJ . A deep learning approach to programmable rna switches. Nat Commun. 2020; 11 (1): 5057.
CrossRef
Google scholar
|
[49] |
Way JC , Collins JJ , Keasling JD , Silver PA . Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell. 2014; 157 (1): 151- 61.
CrossRef
Google scholar
|
/
〈 | 〉 |