Loc4Lnc: Accurate prediction of long noncoding RNA subcellular localization via enhanced RNA sequence representation

Yujia Cheng , Xiaoyong Pan , Yang Yang

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (3) : e100

PDF (1354KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (3) : e100 DOI: 10.1002/qub2.100
METHOD

Loc4Lnc: Accurate prediction of long noncoding RNA subcellular localization via enhanced RNA sequence representation

Author information +
History +
PDF (1354KB)

Abstract

Long noncoding RNAs (lncRNAs) are crucial in gene regulation, chromatin architecture, and cellular differentiation, playing significant roles in various diseases and serving as potential biomarkers and therapeutic targets. Understanding their precise subcellular localization is essential for elucidating their functions in biological pathways. Current methods for predicting lncRNA subcellular localization face challenges in capturing long-range interactions within sequences. Deep learning models often struggle with feature extraction that adequately represents these distant dependencies, leading to limited predictive accuracy. We develop Loc4Lnc, a deep learning framework for predicting lncRNA subcellular localization. The model integrates convolutional layers and transformer blocks to effectively capture both local sequence motifs and long-range dependencies within RNA sequences, followed by classification using TextCNN. Using the RNALocate v2.0 database, we constructed a benchmark dataset covering five subcellular locations (cytoplasm, nucleus, cytosol, chromatin, and exosome). The performance of the model is evaluated against existing feature extraction methods and existing predictors. Results of the Loc4Lnc study demonstrate significant improvements in predicting lncRNA subcellular localization. The model achieved a prediction accuracy of 0.636 on an independent test set, outperforming existing methodologies. Comparative evaluations showed that it consistently surpassed traditional feature extraction methods and state-of-the-art predictors, highlighting its robustness and effectiveness in accurately classifying lncRNAs across five distinct subcellular locations. Loc4Lnc effectively captures long-range interactions and optimizes information flow between distal elements, providing an effective predictive tool for the subcellular localization of lncRNAs and laying the foundation for future research on the regulation of gene expression and cellular functions by lncRNAs.

Keywords

lncRNA / long sequence analysis / subcellular localization

Cite this article

Download citation ▾
Yujia Cheng, Xiaoyong Pan, Yang Yang. Loc4Lnc: Accurate prediction of long noncoding RNA subcellular localization via enhanced RNA sequence representation. Quant. Biol., 2025, 13(3): e100 DOI:10.1002/qub2.100

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mattick JS , Amaral PP , Carninci P , Carpenter S , Chang HY , Chen LL , et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023; 24 (6): 430- 47.

[2]

Giannuzzi F , Maiullari S , Gesualdo L , Sallustio F . The mission of long non-coding RNAs in human adult renal stem/progenitor cells and renal diseases. Cells. 2023; 12 (8): 1115.

[3]

Carrieri C , Cimatti L , Biagioli M , Beugnet A , Zucchelli S , Fedele S , et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012; 491 (424): 454- 7.

[4]

Yoon JH , Abdelmohsen K , Gorospe M . Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013; 425 (19): 3723- 30.

[5]

Hirose T , Virnicchi G , Tanigawa A , Naganuma T , Li RH , Kimura H , et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell. 2014; 25 (1): 169- 83.

[6]

Willingham AT , Orth AP , Batalov S , Peters EC , Wen BG , Aza-Blanc P , et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science. 2005; 309 (5740): 1570- 3.

[7]

Mourtada-Maarabouni M , Hasan AM , Farzaneh F , Williams GT . Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5(GAS5). Mol Pharmacol. 2010; 78 (1): 19- 28.

[8]

Yang GD , Lu XZ , Yuan LJ . LncRNA: a link between RNA and cancer. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms. 2014; 1839 (11): 1097- 109.

[9]

Nemeth K , Bayraktar R , Ferracin M , Calin GA . Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024; 25 (3): 211- 32.

[10]

Gupta SC , Awasthee N , Rai V , Chava S , Gunda V , Challagundla KB . Long non-coding RNAs and nuclear factor-κB crosstalk in cancer and other human diseases. Biochim Biophys Acta, Rev Cancer. 2020: 1873.

[11]

Good DJ . Non-coding RNAs in human health and diseases. Genes. 2023; 14 (7): 1429.

[12]

Navarro C , Cano C , Cuadros M , Herrera-Merchan A , Molina M , Blanco A . A mechanistic study of lncRNA fendrr regulation of FoxF1 lung cancer tumor supressor. Bioinformatics and Biomedical Engineering (Iwbbio 2016). 2016; 9656: 781- 9.

[13]

Arslan S , Sahin , Bayyurt B , Berkan Ö , Yilmaz MB , Asam M , et al. Role of lncRNAs in remodeling of the coronary artery plaques in patients with atherosclerosis. Mol Diagn Ther. 2023; 27 (5): 601- 10.

[14]

Statello L , Guo CJ , Chen LL , Huarte M . Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021; 22 (2): 96- 118.

[15]

Chen LL . Linking long noncoding RNA localization and function. Trends Biochem Sci. 2016; 41 (9): 761- 72.

[16]

Rinn JL , Chang HY . Longnoncoding RNAs:molecular modalities to organismal functions. Annu Rev Biochem. 2020; 89 (89): 283- 308.

[17]

Gudenas BL , Wang LJ . Prediction of LncRNA subcellular localization with deep learning from sequence features. Sci Rep. 2018; 8 (1): 16385.

[18]

Cao Z , Pan XY , Yang Y , Huang Y , Shen HB . The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier. Bioinformatics. 2018; 34 (13): 2185- 94.

[19]

Zeng M , Wu YF , Lu CQ , Zhang FH , Wu FX , Li M . DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding. Briefings Bioinf. 2022; 23 (1).

[20]

Zeng M , Wu YF , Li YM , Yin R , Lu CQ , Duan JW , et al. LncLoc-Former: a Transformer-based deep learning model for multi-label lncRNA subcellular localization prediction by using localization-specific attention mechanism. Bioinformatics. 2023; 39 (12).

[21]

Liu HB , Li DG , Wu H . lncLocator-imb: an imbalance-tolerant ensemble deep learning framework for predicting long non-coding RNA subcellular localization. IEEE Journal of Biomedical and Health Informatics. 2024; 28 (1): 538- 47.

[22]

Su ZD , Huang Y , Zhang ZY , Zhao YW , Wang D , Chen W , et al. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics. 2018; 34 (24): 4196- 204.

[23]

Chen W , Lei TY , Jin DC , Lin H , Chou KC . PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal Biochem. 2014; 456: 53- 60.

[24]

Fan YX , Chen MJ , Zhu QQ . lncLocPred: predicting LncRNA subcellular localization using multiple sequence feature information. IEEE Access. 2020; 8: 124702- 11.

[25]

Zhou H , Wang H , Tang J , Ding Y , Guo F . Identify ncRNA subcellular localization via graph regularized k-local hyperplane distance nearest neighbor model on multi-kernel learning. IEEE ACM Trans Comput Biol Bioinf. 2022; 19 (6): 3517- 29.

[26]

Lin Y , Pan XY , Shen HB . IncLocator 2.0: a cell-line-specific subcellular localization predictor for long non-coding RNAs with interpretable deep learning. Bioinformatics. 2021; 37 (16): 2308- 16.

[27]

Bai T , Liu B . ncRNALocate-EL: a multi-label ncRNA subcellular locality prediction model based on ensemble learning. Briefings in Functional Genomics. 2023; 22 (5): 442- 52.

[28]

Li M , Zhao BY , Yin R , Lu CQ , Guo F , Zeng M . GraphLncLoc: long non-coding RNA subcellular localization prediction using graph convolutional networks based on sequence to graph transformation. Briefings Bioinf. 2023; 24 (1): bbac565.

[29]

Li M , Zhao BY , Li YM , Ding PJ , Yin R , Kan SC , et al., 7. Big Data Mining and Analytics; 2024. p. 765-80.SGCL-LncLoc: an interpretable deep learning model for improving IncRNA subcellular localization prediction with supervised graph contrastive learning big data mining and Analytics3.

[30]

Avsec Z , Agarwal V , Visentin D , Ledsam JR , Grabska-Barwinska A , Taylor KR , et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods. 2021; 18 (10): 1196- 203.

[31]

Song LL , Zhang YZ , Hou YX . Convolutional neural network with pair-wise pure dependence for sentence classification. In: 2018 international conference on artificial intelligence and big data (icaibd). 2018. p. 117- 21.

[32]

Desai A , Zumbo A , Giordano M , Morandini P , Laino ME , Azzolini E , et al. Word2vec word embedding-based artificial intelligence model in the triage of patients with suspected diagnosis of major ischemic stroke: a feasibility study. Int J Environ Res Publ Health. 2022; 19 (22): 15295.

[33]

Ji YR , Zhou ZH , Liu H , Davuluri R . DNABERT: pre-trained bidirectional encoder representations from transformers model for DNA-language in genome. Bioinformatics. 2021; 37 (15): 2112- 20.

[34]

Zhang T , Tan PW , Wang LQ , Jin NN , Li YN , Zhang L , et al. RNALocate: a resource for RNA subcellular localizations. Nucleic Acids Res. 2017; 45: D135- 8.

[35]

Cui TY , Dou YY , Tan PW , Ni Z , Liu TY , Wang DL , et al. RNALocate v2.0: an updated resource for RNA subcellular localization with increased coverage and annotation. Nucleic Acids Res. 2022; 50(D1): D333- 9.

[36]

Fu LM , Niu BF , Zhu ZW , Wu ST , Li WZ . CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012; 28 (23): 3150- 2.

[37]

Sirri V , Urcuqui-Inchima S , Roussel P , Hernandez-Verdun D . Nucleolus: the fascinating nuclear body. Histochem Cell Biol. 2008; 129 (1): 13- 31.

[38]

Bengio Y , Ducharme R , Vincent P , Jauvin C . A neural probabilistic language model. J Mach Learn Res. 2003; 3: 1137- 55.

[39]

He KM , Zhang XY , Ren SQ , Sun J . Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition(CVPR); 2016. p. 770- 8.

[40]

Vaswani A , Shazeer N , Parmar N , Uszkoreit J , Jones L , Gomez AN , et al. Attention is all you need. Adv Neural Inf Process Syst. 2017: 30.

[41]

Kelley DR . Cross-species regulatory sequence activity prediction. PLoS Comput Biol. 2020; 16 (7): e1008050.

[42]

Zhang YB , Zhang ZF , Miao DQ , Wang JQ . Three-way enhanced convolutional neural networks for sentence-level sentiment classification. Inf Sci. 2019; 477: 55- 64.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1354KB)

330

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/