Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes

Rui Liu, Kazuyuki Aihara, Luonan Chen

PDF(772 KB)
PDF(772 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (2) : 105-114. DOI: 10.1007/s40484-013-0008-0
REVIEW

Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes

Author information +
History +

Abstract

Non-smooth or even abrupt state changes exist during many biological processes, e.g., cell differentiation processes, proliferation processes, or even disease deterioration processes. Such dynamics generally signals the emergence of critical transition phenomena, which result in drastic changes of system states or eventually qualitative changes of phenotypes. Hence, it is of great importance to detect such transitions and further reveal their molecular mechanisms at network level. Here, we review the recent advances on dynamical network biomarkers (DNBs) as well as the related theoretical foundation, which can identify not only early signals of the critical transitions but also their leading networks, which drive the whole system to initiate such transitions. In order to demonstrate the effectiveness of this novel approach, examples of complex diseases are also provided to detect pre-disease stage, for which traditional methods or biomarkers failed.

Cite this article

Download citation ▾
Rui Liu, Kazuyuki Aihara, Luonan Chen. Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes. Quant Biol, 2013, 1(2): 105‒114 https://doi.org/10.1007/s40484-013-0008-0

References

[1]
Venegas, J. G., Winkler, T., Musch, G., Vidal Melo, M. F., Layfield, D., Tgavalekos, N., Fischman, A. J., Callahan, R. J., Bellani, G. and Harris, R. S. (2005) Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature, 434, 777-782
CrossRef Pubmed Google scholar
[2]
McSharry, P. E., Smith, L. A. and Tarassenko, L. (2003) Prediction of epileptic seizures: are nonlinear methods relevant? Nat. Med., 9, 241-242
CrossRef Pubmed Google scholar
[3]
Pastor-Barriuso, R., Guallar, E. and Coresh, J. (2003) Transition models for change-point estimation in logistic regression. Stat. Med., 22, 1141-1162
CrossRef Pubmed Google scholar
[4]
Paek, S. H., Chung, H. T., Jeong, S. S., Park, C. K., Kim, C. Y., Kim, J. E., Kim, D. G. and Jung, H. W. (2005) Hearing preservation after gamma knife stereotactic radiosurgery of vestibular schwannoma. Cancer, 104, 580-590
CrossRef Pubmed Google scholar
[5]
Liu, J. K., Rovit, R. L. and Couldwell, W. T. (2001) Pituitary Apoplexy. Semin. Neurosurg., 12, 315-320.
[6]
Appasani, K. and Appasani, R. K. (2011) Stem Cells and Regenerative Medicine. NY: Humana Press.
[7]
Chen, L., Liu, R., Liu, Z. P., Li, M. and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342
CrossRef Pubmed Google scholar
[8]
Liu, R., Li, M., Liu, Z. P., Wu, J., Chen, L. and Aihara, K. (2012) Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep., 2, 813
CrossRef Pubmed Google scholar
[9]
40.Liu, X., Liu, R., Zhao, X. and Chen, L. (2013) Detecting early-warning signals of type 1 diabetes and its leading biomolecular networks by dynamical network biomarkers. BMC Med. Genomics (in press)
Pubmed
[10]
9.Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M. and Sugihara, G. (2009) Early-warning signals for critical transitions. Nature, 461, 53-59
CrossRef Pubmed Google scholar
[11]
Rhodes, D. R., Sanda, M. G., Otte, A. P., Chinnaiyan, A. M. and Rubin, M. A. (2003) Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J. Natl. Cancer Inst., 9, 661-668
CrossRef Google scholar
[12]
Ren, X., Wang, Y., Chen, L., Zhang, X. and Jin, Q. (2012) ellipsoidfn: a tool for identifying a heterogeneous set of cancer biomarkers based on gene expressions. Nucleic. Acids. Res.,
CrossRef Google scholar
[13]
Hernandez, J. and Thompson, I. M. (2004) Prostate-specific antigen: A review of the validation of the most commonly used cancer biomarker. American Cancer Society, 101, 894-904.
[14]
Allhoff, E. P., Proppe, K. H., Chapman, C. M., Lin, C. W. and Prout, G. R. Jr. (1983) Evaluation of prostate specific acid phosphatase and prostate specific antigen in identification of prostatic cancer. J. Urol., 129, 315-318
Pubmed
[15]
Hirata, Y., Bruchovsky, N. and Aihara, K. (2010) Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. J. Theor. Biol., 264, 517-527
CrossRef Pubmed Google scholar
[16]
Berchuck, A. (1995) Biomarkers in the ovary. J. Cell Biochem. Suppl., 23, 223-226PMID:8747400
CrossRef Google scholar
[17]
Soussi, T., Wiman, K. G., Otte, A. P., Chinnaiyan, A. M. and Rubin, M. A. (2007) Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell, 12, 303-312PMID:17936556
CrossRef Google scholar
[18]
Jin, G., Zhou, X., Wang, H., Zhao, H., Cui, K., Zhang, X. S., Chen, L., Hazen, S. L., Li, K. and Wong, S. T. (2008) The knowledge-integrated network biomarkers discovery for major adverse cardiac events. J. Proteome. Res., 7, 4013-4021
CrossRef Pubmed Google scholar
[19]
Ideker, T. and Sharan, R. (2008) Protein networks in disease. Genome Res., 18, 644-652
CrossRef Pubmed Google scholar
[20]
Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D. and Ideker, T. (2007) Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 3, 140
CrossRef Pubmed Google scholar
[21]
Liu, M., Liberzon, A., Kong, S. W., Lai, W. R., Park, P. J., Kohane, I. S. and Kasif, S. (2007) Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genet., 3, e96
CrossRef Pubmed Google scholar
[22]
Jiang, B. B., Wang, J. G., Xiao, J. F. and Wang, Y. (2009) Gene prioritization for type 2 diabetes in tissue-specific protein interaction networks. Lect. Notes Oper. Res., 11, 319-328.
[23]
Jin, G., Zhou, X., Cui, K., Zhang, X. S., Chen, L. and Wong, S. T. (2009) Cross-platform method for identifying candidate network biomarkers for prostate cancer. IET Syst. Biol., 3, 505-512
CrossRef Pubmed Google scholar
[24]
Krauthammer, M., Kaufmann, C. A., Gilliam, T. C. and Rzhetsky, A. (2004) Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 101, 15148-15153
CrossRef Pubmed Google scholar
[25]
Liu, Z. P., Wang, Y., Wen, T., Zhang, X. S., Xia, W. and Chen, L. (2009) Dynamically dysfunctional protein interactions in the development of Alzheimers disease’. Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, San Antonio, USA, 4262-4267.
[26]
Liu, Z. P., Wang, Y., Zhang, X. S. and Chen, L. (2012) Network-based analysis of complex diseases. IET Syst. Biol.,6, 22
Pubmed
[27]
Wen, Z., Liu, Z. P., Liu, Z., Zhang, Y. and Chen, L. (2012) An integrated approach to identify causal network modules of complex diseases with application to colorectal cancer. J. Am. Med. Inform. Assoc.,
CrossRef Pubmed Google scholar
[28]
Liu, K. Q., Liu, Z. P., Hao, J. K., Chen, L. and Zhao, X. M. (2012) Identifying disregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics, 13, 126
CrossRef Pubmed Google scholar
[29]
He, D., Liu, Z. P., Honda, M., Kaneko, S. and Chen, L. (2012) Coexpression network analysis in chronic hepatitis B and C hepatic lesions reveals distinct patterns of disease progression to hepatocellular carcinoma. J. Mol. Cell Biol., 4, 140-152
CrossRef Pubmed Google scholar
[30]
Zeng, T. and Chen, L. (2012) Tracing dynamic biological processes during phase transition. BMC Syst. Biol., 6, S23
CrossRef Google scholar
[31]
He, D., Liu, Z. P. and Chen, L. (2011) Identification of dysfunctional modules and disease genes in congenital heart disease by a network-based approach. BMC Genomics, 12, 592
CrossRef Pubmed Google scholar
[32]
Liu, X., Liu, Z. P., Zhao, X. M. and Chen, L. (2012) Identifying disease genes and module biomarkers by differential interactions. J. Am. Med. Inform. Assoc., 19, 241-248
CrossRef Pubmed Google scholar
[33]
Liu, Z. P., Wang, Y., Zhang, X. S., Xia, W. and Chen, L. (2011) Detecting and analyzing differentially activated pathways in brain regions of Alzheimer’s disease patients. Mol. Biosyst., 7, 1441-1452
CrossRef Pubmed Google scholar
[34]
Liu, X., Wang, J. and Chen, L. (2012) Whole-exome sequencing reveals recurrent somatic mutation networks in cancer. Cancer Lett.,
CrossRef Pubmed Google scholar
[35]
Wang, J., Sun, Y., Zheng, S., Zhang, X., Zhou, H. and Chen, L. (2013) APG: an active protein-gene network model to quantify regulatory signals in complex biological systems. Scientific Reports.
[36]
10.Ao, P. (2004) Potential in stochastic differential equations: novel construction. J. Phys. A, 37, L25C30
CrossRef Google scholar
[37]
36.Ao, P., Galas, D., Hood, L. and Zhu, X. (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses, 70, 678-684
CrossRef Pubmed Google scholar
[38]
Tanaka, G., Tsumoto, K., Tsuji, S. and Aihara, K. (2008) Bifurcation analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer. Physica D, 237, 2616-2627
CrossRef Google scholar
[39]
Gilmore, R. (1981) Catastrophe Theory for Scientists and Engineers. New York: Wiley.
[40]
Murray, J. D. (1993) Mathematical Biology. New York: Springer.
[41]
Chen, L., Wang, R., Li, C. and Aihara, K. (2010) Modeling Biomolecular Networks in Cells: Structures and Dynamics’. New York: Springer.
[42]
Chen, L., Wang, R. and Zhang, X. (2009) Biomolecular Networks: Methods and Applications in Systems Biology. New Jersey: John Wiley & Sons, Hoboken.
[43]
Voit, E. O. (2009) A systems-theoretical framework for health and disease: inflammation and preconditioning from an abstract modeling point of view. Math. Biosci., 217, 11-18
CrossRef Pubmed Google scholar
[44]
Hovinen, E., Kekki, M. and Kuikka, S. (1976) A theory to the stochastic dynamic model building for chronic progressive disease processes with an application to chronic gastritis. J. Theor. Biol., 57, 131-152
CrossRef Pubmed Google scholar
[45]
Guckenheimer, J. and Holmes, P. (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer.
[46]
Wiggins, S. (1988) Global Bifurcations and Chaos: Analytical Methods. New York: Springer.
[47]
Arnol’d, V. I. (1994) Dynamical Systems V, Bifurcation Theory and Catastrophe Theory. New York: Springer.
[48]
Murdock, J. (2003) Normal Forms and Unfoldings for Local Dynamical Systems. New York: Springer.
[49]
Dakos, V., Van Nes, E. H., Donangelo, R., Fort, H. and Scheffer, M. (2010) Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol., 3, 163-174
CrossRef Google scholar
[50]
Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., (2001) Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron, 30, 51-64
CrossRef Pubmed Google scholar
[51]
Sciuto, A. M., Phillips, C. S., Orzolek, L. D., Hege, A. I., Moran, T. S. and Dillman, J. F. 3rd. (2005) Genomic analysis of murine pulmonary tissue following carbonyl chloride inhalation. Chem. Res. Toxicol., 18, 1654-1660
CrossRef Pubmed Google scholar

ACKNOWLEGEMENTS

The work was supported by the National Natural Science Foundation of China under Nos. 61072149, 61134013, 91029301 and 11241002, and by the Chief Scientist Program of SIBS of CAS with No. 2009CSP002. The work was also supported by Shanghai Pujiang Program, the Knowledge Innovation Program of CAS (No. KSCX2-EW-R-01), and 863 project (No. 2012AA020406), the National Center for Mathematics and Interdisciplinary Sciences of CAS, and the FIRST program from JSPS initiated by CSTP.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(772 KB)

Accesses

Citations

Detail

Sections
Recommended

/