Predictive power of cell-to-cell variability

Bochong Li, Lingchong You

PDF(326 KB)
PDF(326 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (2) : 131-139. DOI: 10.1007/s40484-013-0013-3
REVIEW
REVIEW

Predictive power of cell-to-cell variability

Author information +
History +

Abstract

Much of our current knowledge of biology has been constructed based on population-average measurements. However, advances in single-cell analysis have demonstrated the omnipresent nature of cell-to-cell variability in any population. On one hand, tremendous efforts have been made to examine how such variability arises, how it is regulated by cellular networks, and how it can affect cell-fate decisions by single cells. On the other hand, recent studies suggest that the variability may carry valuable information that can facilitate the elucidation of underlying regulatory networks or the classification of cell states. To this end, a major challenge is determining what aspects of variability bear significant biological meaning. Addressing this challenge requires the development of new computational tools, in conjunction with appropriately chosen experimental platforms, to more effectively describe and interpret data on cell-cell variability. Here, we discuss examples of when population heterogeneity plays critical roles in determining biologically and clinically significant phenotypes, how it serves as a rich information source of regulatory mechanisms, and how we can extract such information to gain a deeper understanding of biological systems.

Cite this article

Download citation ▾
Bochong Li, Lingchong You. Predictive power of cell-to-cell variability. Quant Biol, 2013, 1(2): 131‒139 https://doi.org/10.1007/s40484-013-0013-3

References

[1]
Balázsi, G., van Oudenaarden, A. and Collins, J. J. (2011) Cellular decision making and biological noise: From microbes to mammals. Cell, 144, 910–925
Pubmed
[2]
Nachman, I., Regev, A. and Ramanathan, S. (2007) Dissecting timing variability in yeast meiosis. Cell, 131, 544–556
Pubmed
[3]
Raj, A. and van Oudenaarden, A. (2008) Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell, 135, 216–226
Pubmed
[4]
Spencer, S. L. and Sorger, P. K. (2011) Measuring and modeling apoptosis in single cells. Cell, 144, 926–939
Pubmed
[5]
Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. and Huang, S. (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544–547
Pubmed
[6]
Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C. G. and Brent, R. (2005) Regulated cell-to-cell variation in a cell-fate decision system. Nature, 437, 699–706
Pubmed
[7]
Raj, A., Rifkin, S. A., Andersen, E. and van Oudenaarden, A. (2010) Variability in gene expression underlies incomplete penetrance. Nature, 463, 913–918
Pubmed
[8]
Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. and Sorger, P. K. (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature, 459, 428–432
Pubmed
[9]
Tay, S., Hughey, J. J., Lee, T. K., Lipniacki, T., Quake, S. R. and Covert, M. W. (2010) Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature, 466, 267–271
Pubmed
[10]
Khan, M., Vaes, E. and Mombaerts, P. (2011) Regulation of the probability of mouse odorant receptor gene choice. Cell, 147, 907–921
Pubmed
[11]
Zeng, L., Skinner, S. O., Zong, C., Sippy, J., Feiss, M. and Golding, I. (2010) Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell, 141, 682–691
Pubmed
[12]
Vlamakis, H., Aguilar, C., Losick, R. and Kolter, R. (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes. Dev., 22, 945–953
Pubmed
[13]
St-Pierre, F. and Endy, D. (2008) Determination of cell fate selection during phage lambda infection. Proc. Natl. Acad. Sci. USA, 105, 20705–20710
Pubmed
[14]
Zong, C., So, L. H., Sepúlveda, L. A., Skinner, S. O. and Golding, I. (2010) Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene. Mol. Syst. Biol., 6, 440
Pubmed
[15]
Snijder, B., Sacher, R., Rämö, P., Damm, E. M., Liberali, P. and Pelkmans, L. (2009) Population context determines cell-to-cell variability in endocytosis and virus infection. Nature, 461, 520–523
Pubmed
[16]
Feinerman, O., Jentsch, G., Tkach, K. E., Coward, J. W., Hathorn, M. M., Sneddon, M. W., Emonet, T., Smith, K. A. and Altan-Bonnet, G. (2010) Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol., 6, 437
Pubmed
[17]
Cohen, A. A., Geva-Zatorsky, N., Eden, E., Frenkel-Morgenstern, M., Issaeva, I., Sigal, A., Milo, R., Cohen-Saidon, C., Liron, Y., Kam, Z., (2008) Dynamic proteomics of individual cancer cells in response to a drug. Science, 322, 1511–1516
Pubmed
[18]
Snijder, B. and Pelkmans, L. (2011) Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol., 12, 119–125
Pubmed
[19]
Mettetal, J. T., Muzzey, D., Pedraza, J. M., Ozbudak, E. M. and van Oudenaarden, A. (2006) Predicting stochastic gene expression dynamics in single cells. Proc. Natl. Acad. Sci. USA, 103, 7304–7309
Pubmed
[20]
Swain, P. S., Elowitz, M. B. and Siggia, E. D. (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA, 99, 12795–12800
Pubmed
[21]
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186
Pubmed
[22]
Losick, R. and Desplan, C. (2008) Stochasticity and cell fate. Science, 320, 65–68
Pubmed
[23]
Acar, M., Mettetal, J. T. and van Oudenaarden, A. (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet., 40, 471–475
Pubmed
[24]
Wernet, M. F., Mazzoni, E. O., Celik, A., Duncan, D. M., Duncan, I. and Desplan, C. (2006) Stochastic spineless expression creates the retinal mosaic for colour vision. Nature, 440, 174–180
Pubmed
[25]
Johnston, R. J. Jr and Desplan, C. (2010) Stochastic mechanisms of cell fate specification that yield random or robust outcomes. Annu. Rev. Cell Dev. Biol., 26, 689–719
Pubmed
[26]
Chabot, J. R., Pedraza, J. M., Luitel, P. and van Oudenaarden, A. (2007) Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock. Nature, 450, 1249–1252
Pubmed
[27]
Weinberger, L. S., Burnett, J. C., Toettcher, J. E., Arkin, A. P. and Schaffer, D. V. (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell, 122, 169–182
Pubmed
[28]
Maamar, H., Raj, A. and Dubnau, D. (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science, 317, 526–529
Pubmed
[29]
Eldar, A. and Elowitz, M. B. (2010) Functional roles for noise in genetic circuits. Nature, 467, 167–173
Pubmed
[30]
Yao, G., Lee, T. J., Mori, S., Nevins, J. R. and You, L. C. (2008) A bistable Rb-E2F switch underlies the restriction point. Nat. Cell Biol. 10, 476–482
Pubmed
[31]
Batchelor, E., Loewer, A., Mock, C. and Lahav, G. (2011) Stimulus-dependent dynamics of p53 in single cells. Mol. Syst. Biol., 7, 488
Pubmed
[32]
Pelkmans, L. (2012) Cell Biology. Using cell-to-cell variability—a new era in molecular biology. Science, 336, 425–426
Pubmed
[33]
Wang, C., Tian, Y. W., Wu, X. W. and Zhao, X. Z. (1990) Genetic polymorphisms of HLA class III and GLO1 in Chinese Yao nationality. Gene Geography: A Computerized Bulletin on Human Gene Frequencies 4, 29–34.
[34]
Wong, J. V., Yao, G. A., Nevins, J. R. and You, L. C. (2011) Viral-mediated noisy gene expression reveals biphasic E2f1 response to MYC. Mol. Cell, 41, 275–285
Pubmed
[35]
Austin, D. W., Allen, M. S., McCollum, J. M., Dar, R. D., Wilgus, J. R., Sayler, G. S., Samatova, N. F., Cox, C. D. and Simpson, M. L. (2006) Gene network shaping of inherent noise spectra. Nature, 439, 608–611
Pubmed
[36]
Lestas, I., Vinnicombe, G. and Paulsson, J. (2010) Fundamental limits on the suppression of molecular fluctuations. Nature, 467, 174–178
Pubmed
[37]
Volfson, D., Marciniak, J., Blake, W. J., Ostroff, N., Tsimring, L. S. and Hasty, J. (2006) Origins of extrinsic variability in eukaryotic gene expression. Nature, 439, 861–864
Pubmed
[38]
Bialek, W. and Setayeshgar, S. (2008) Cooperativity, sensitivity, and noise in biochemical signaling. Phys. Rev. Lett., 100, 258101
Pubmed
[39]
Friedman, N., Cai, L. and Xie, X. S. (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett., 97, 168302
Pubmed
[40]
Elf, J., Li, G. W. and Xie, X. S. (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316, 1191–1194
Pubmed
[41]
Pedraza, J. M. and Paulsson, J. (2008) Effects of molecular memory and bursting on fluctuations in gene expression. Science, 319, 339–343
Pubmed
[42]
Pedraza, J. M. and van Oudenaarden, A. (2005) Noise propagation in gene networks. Science, 307, 1965–1969
Pubmed
[43]
Suter, D. M., Molina, N., Gatfield, D., Schneider, K., Schibler, U. and Naef, F. (2011) Mammalian genes are transcribed with widely different bursting kinetics. Science, 332, 472–474
Pubmed
[44]
To, T.L. and Maheshri, N. (2010) Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science, 327, 1142–1145
Pubmed
[45]
Hallen, M., Li, B. C., Tanouchi, Y., Tan, C. E. M., West, M. and You, L. C. (2011) Computation of steady-state probability distributions in stochastic models of cellular networks. PLoS Comput. Biol., 7, e1002209
Pubmed
[46]
Ma, R., Wang, J. C., Hou, Z. H. and Liu, H. Y. (2012) Small-number effects: a third stable state in a genetic bistable toggle switch. Phys. Rev. Lett., 109, 248107
Pubmed
[47]
Cağatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J. and Süel, G. M. (2009) Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell, 139, 512–522
Pubmed
[48]
Johnston, R. J. Jr, Otake, Y., Sood, P., Vogt, N., Behnia, R., Vasiliauskas, D., McDonald, E., Xie, B., Koenig, S., Wolf, R., (2011) Interlocked feedforward loops control cell-type-specific Rhodopsin expression in the Drosophila eye. Cell, 145, 956–968
Pubmed
[49]
Dobrzynski, M. and Bruggeman, F. J. (2009) Elongation dynamics shape bursty transcription and translation. Proc. Natl. Acad. Sci. USA, 106, 2583–2588
Pubmed
[50]
Tan, C., Marguet, P. and You, L. C. (2009) Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol., 5, 842–848
Pubmed
[51]
Munsky, B. and Khammash, M. (2010) Identification from stochastic cell-to-cell variation: a genetic switch case study. IET Syst. Biol., 4, 356–366
Pubmed
[52]
Warmflash, A. and Dinner, A. R. (2008) Signatures of combinatorial regulation in intrinsic biological noise. Proc. Natl. Acad. Sci. USA, 105, 17262–17267
Pubmed
[53]
Maienschein-Cline, M., Warmflash, A. and Dinner, A. R. (2010) Defining cooperativity in gene regulation locally through intrinsic noise. IET Syst. Biol., 4, 379–392
Pubmed
[54]
Singh, A., Razooky, B. S., Dar, R. D. and Weinberger, L. S. (2012) Dynamics of protein noise can distinguish between alternate sources of gene-expression variability. Mol. Syst. Biol., 8, 607
Pubmed
[55]
Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y. and Barkai, N. (2006) Noise in protein expression scales with natural protein abundance. Nat. Genet., 38, 636–643
Pubmed
[56]
Lopes, F. M., de Oliveira, E. A. and Cesar, R. M. Jr. (2011) Inference of gene regulatory networks from time series by Tsallis entropy. BMC Syst. Biol., 5, 61
Pubmed
[57]
Bendall, S. C. and Nolan, G. P. (2012) From single cells to deep phenotypes in cancer. Nat. Biotechnol., 30, 639–647
Pubmed
[58]
Munsky, B., Trinh, B. and Khammash, M. (2009) Listening to the noise: random fluctuations reveal gene network parameters. Mol. Syst. Biol., 5, 318
Pubmed
[59]
Hasenauer, J., Waldherr, S., Doszczak, M., Radde, N., Scheurich, P. and Allgöwer, F. (2011) Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinformatics, 12, 125
Pubmed
[60]
Bonassi, F. V., You, L. C. and West, M. (2011) Bayesian learning from marginal data in bionetwork models. Stat. Appl. Genet. Mol., 10.
[61]
Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J. and Koeppl, H. (2012) Moment-based inference predicts bimodality in transient gene expression. Proc. Natl. Acad. Sci. USA, 109, 8340–8345
Pubmed
[62]
Lim, C. A., Yao, F., Wong, J. J. Y., George, J., Xu, H., Chiu, K. P., Sung, W. K., Lipovich, L., Vega, V. B., Chen, J., (2007) Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-kappaB upon TLR4 activation. Mol. Cell, 27, 622–635
Pubmed
[63]
Lillacci, G. and Khammash, M. (2012) A distribution-matching method for parameter estimation and model selection in computational biology. International Journal of Robust and Nonlinear Control, 22, 1065–1081.
[64]
Kügler, P. (2012) Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models. PLoS One, 7, e43001
Pubmed
[65]
August, E. (2012) Using noise for model-testing. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology 19, 968–977.
[66]
Cox, C. D., McCollum, J. M., Allen, M. S., Dar, R. D. and Simpson, M. L. (2008) Using noise to probe and characterize gene circuits. Proc. Natl. Acad. Sci. USA, 105, 10809–10814
Pubmed
[67]
Kim, D., Debusschere, B. J. and Najm, H. N. (2007) Spectral methods for parametric sensitivity in stochastic dynamical systems. Biophys. J., 92, 379–393
Pubmed
[68]
Ren, J., Wang, W. X., Li, B. and Lai, Y. C. (2010) Noise bridges dynamical correlation and topology in coupled oscillator networks. Phys. Rev. Lett., 104, 058701
Pubmed
[69]
Feinerman, O., Veiga, J., Dorfman, J. R., Germain, R. N. and Altan-Bonnet, G. (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science, 321, 1081–1084
Pubmed
[70]
Brock, A., Chang, H. and Huang, S. (2009) Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat. Rev. Genet., 10, 336–342
Pubmed
[71]
Creixell, P., Schoof, E. M., Erler, J. T. and Linding, R. (2012) Navigating cancer network attractors for tumor-specific therapy. Nat. Biotechnol., 30, 842–848
Pubmed
[72]
Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 366, 883–892
Pubmed
[73]
Irish, J. M., Hovland, R., Krutzik, P. O., Perez, O. D., Bruserud, O., Gjertsen, B. T. and Nolan, G.P. (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell, 118, 217–228
Pubmed
[74]
Kotecha, N., Flores, N. J., Irish, J. M., Simonds, E. F., Sakai, D. S., Archambeault, S., Diaz-Flores, E., Coram, M., Shannon, K. M., Nolan, G. P., (2008) Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell, 14, 335–343
Pubmed
[75]
Hayashi, M., Okabe-Kado, J. and Hozumi, M. (1994) Flow-cytometric analysis of in vivo induction of differentiation of WEHI-3B myelomonocytic leukemia cells by recombinant granulocyte colony-stimulating factor. Exp. Hematol., 22, 393–398
Pubmed
[76]
Marusyk, A., Almendro, V. and Polyak, K. (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer, 12, 323–334
Pubmed
[77]
Li, W., Cui, L. B. and Ng, M. K. (2012) On computation of the steady-state probability distribution of probabilistic Boolean networks with gene perturbation. J. Comput. Appl. Math., 236, 4067–4081.
[78]
Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C. and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146, 633–644
Pubmed
[79]
Krutzik, P. O., Crane, J. M., Clutter, M. R. and Nolan, G. P. (2008) High-content single-cell drug screening with phosphospecific flow cytometry. Nat. Chem. Biol., 4, 132–142
Pubmed
[80]
Ghimire, P., Wu, G. Y. and Zhu, L. (2010) Primary esophageal lymphoma in immunocompetent patients: Two case reports and literature review. World Journal of Radiology, 2, 334–338.
[81]
Song, Y., Yang, Z., Ke, Z., Yao, Y., Hu, X., Sun, Y., Li, H., Yin, J. and Zeng, C. (2012) Expression of 14-3-3gamma in patients with breast cancer: correlation with clinicopathological features and prognosis. Cancer Epidemiology, 36, 533–536.
[82]
Bosch, J., Gerstein, H. C., Dagenais, G. R., Díaz, R., Dyal, L., Jung, H., Maggiono, A. P., Probstfield, J., Ramachandran, A., Riddle, M. C., and the ORIGIN Trial Investigators. (2012) n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med., 367, 309–318
Pubmed
[83]
Gerstein, H. C., Bosch, J., Dagenais, G. R., Díaz, R., Jung, H., Maggioni, A. P., Pogue, J., Probstfield, J., Ramachandran, A., Riddle, M. C., and the ORIGIN Trial Investigators. (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med., 367, 319–328
Pubmed
[84]
Canham, M. A., Sharov, A. A., Ko, M. S. and Brickman, J. M. (2010) Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol., 8, e1000379
Pubmed
[85]
Novershtern, N., Subramanian, A., Lawton, L. N., Mak, R. H., Haining, W. N., McConkey, M. E., Habib, N., Yosef, N., Chang, C. Y., Shay, T., (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell, 144, 296–309
Pubmed
[86]
Caie, P. D., Walls, R. E., Ingleston-Orme, A., Daya, S., Houslay, T., Eagle, R., Roberts, M. E., and Carragher, N. O. (2010) High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol. Cancer Ther., 9, 1913–1926
Pubmed
[87]
Sutherland, J. J., Low, J., Blosser, W., Dowless, M., Engler, T. A. and Stancato, L. F. (2011) A robust high-content imaging approach for probing the mechanism of action and phenotypic outcomes of cell-cycle modulators. Mol. Cancer Ther., 10, 242–254
Pubmed
[88]
Elghetany, M. T. (2002) Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood, 99, 391–392
Pubmed
[89]
Stetler-Stevenson, M., Arthur, D. C., Jabbour, N., Xie, X. Y., Molldrem, J., Barrett, A. J., Venzon, D. and Rick, M. E. (2001) Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood, 98, 979–987
Pubmed
[90]
Finn, W. G., Harrington, A. M., Carter, K. M., Raich, R., Kroft, S. H. and Hero, A. O. 3rd. (2011) Immunophenotypic signatures of benign and dysplastic granulopoiesis by cytomic profiling. Cytometry B Clin. Cytom., 80, 282–290
Pubmed
[91]
Stachurski, D., Smith, B. R., Pozdnyakova, O., Andersen, M., Xiao, Z., Raza, A., Woda, B. A., and Wang, S. A. (2008) Flow cytometric analysis of myelomonocytic cells by a pattern recognition approach is sensitive and specific in diagnosing myelodysplastic syndrome and related marrow diseases: emphasis on a global evaluation and recognition of diagnostic pitfalls. Leuk. Res., 32, 215–224
Pubmed
[92]
Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T. I., Maier, L. M., Baecher-Allan, C., McLachlan, G. J., Tamayo, P., Hafler, D. A., (2009) Automated high-dimensional flow cytometric data analysis. Proc. Natl. Acad. Sci. USA, 106, 8519–8524
Pubmed
[93]
Finn, W. G., Carter, K. M., Raich, R., Stoolman, L. M. and Hero, A. O. (2009) Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: treating flow cytometry data as high-dimensional objects. Cytometry B Clin. Cytom., 76, 1–7
Pubmed
[94]
Rogers, W. T. and Holyst, H. A. (2009) FlowFP: A bioconductor package for fingerprinting flow cytometric data. Adv. Bioinformatics,193947
Pubmed
[95]
Rogers, W. T., Moser, A. R., Holyst, H. A., Bantly, A., Mohler, E. R., 3rd, Scangas, G. and Moore, J. S. (2008) Cytometric fingerprinting: quantitative characterization of multivariate distributions. Cytometry. Part A: the Journal of the International Society for Analytical Cytology, 73, 430–441.

ACKNOWLEDGEMENTS

The work described was partially supported by a National Science Foundation CAREER Award (BES-0625213), a DuPont Young Professorship, a David and Lucile Packard Fellowship, North Carolina Biotechnology Center (2012-MRG-1102), and Office of Naval Research (N00014-12-1-0631).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(326 KB)

Accesses

Citations

Detail

Sections
Recommended

/